1
|
Zeydan B, Neyal N, Son J, Schwarz CG, Kendall Thomas JC, Morrison HA, Bush ML, Reid RI, Przybelski SA, Fought AJ, Jack CR, Petersen RC, Kantarci K, Lowe VJ, Airas L, Kantarci OH. Microglia positron emission tomography and progression in multiple sclerosis: thalamus on fire. Brain Commun 2025; 7:fcaf141. [PMID: 40322777 PMCID: PMC12046125 DOI: 10.1093/braincomms/fcaf141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Increased innate immune activity promotes neurodegeneration and contributes to progression in multiple sclerosis. This prospective case-control study aims to investigate thalamic microglia density on 18kDa translocator protein PET in patients with multiple sclerosis using a third-generation radioligand, 11C-ER176, and investigate the associations of 11C-ER176 PET uptake with imaging and clinical measures of progression in multiple sclerosis. Patients with multiple sclerosis (n = 50) and controls (n = 55) were prospectively enrolled and they underwent 11C-ER176 PET and MRI including diffusion MRI with neurite orientation dispersion and density imaging. Disease characteristics, expanded disability status scale and multiple sclerosis functional composite scores were obtained in patients with multiple sclerosis. Age at imaging (mean ± standard deviation: patients = 49.6 ± 12.9 years, controls = 48.2 ± 15.4 years, P = 0.63) and sex (female ratio; patients = 72%, controls = 65%, P = 0.47) were not different between the groups. Thalamus 11C-ER176 PET uptake was highest in patients with progressive multiple sclerosis (1.272 ± 0.072 standardized uptake value ratio), followed by patients with relapsing multiple sclerosis (1.209 ± 0.074 standardized uptake value ratio) and lowest in controls (1.162 ± 0.067 standardized uptake value ratio, P < 0.001). Patients with thalamic lesions had higher thalamus 11C-ER176 PET uptake than those without thalamic lesions in both relapsing multiple sclerosis and progressive multiple sclerosis (P < 0.001). In patients with multiple sclerosis, higher thalamus 11C-ER176 PET uptake correlated with lower thalamic volume (r = -0.45, P = 0.001), higher mean diffusivity (r = 0.56, P < 0.001), lower neurite density index (r = -0.43, P = 0.002), lower orientation dispersion index (r = -0.40, P = 0.005) and higher free water fraction (r = 0.42, P = 0.003) in the thalamus. In patients with multiple sclerosis, higher thalamus 11C-ER176 PET uptake also correlated with higher mean diffusivity (r = 0.47, P < 0.001) and lower neurite density index (r = -0.36, P = 0.012) in the corpus callosum. In patients with multiple sclerosis, higher thalamus 11C-ER176 PET uptake correlated with worse expanded disability status scale scores (r = 0.33, P = 0.02), paced auditory serial addition test scores (r = -0.43, P = 0.003) and multiple sclerosis functional composite z-scores (r = -0.46, P = 0.001). Microglia density in the thalamus is highest in patients with progressive multiple sclerosis and is associated with imaging biomarkers of neurodegeneration and clinical disease severity. As a signature imaging biomarker of progression in multiple sclerosis, effectively reflecting the global disease burden, 11C-ER176 PET may aid development and efficacy evaluation of therapeutics targeting microglia.
Collapse
Affiliation(s)
- Burcu Zeydan
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Women’s Health Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Nur Neyal
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jiye Son
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Holly A Morrison
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa L Bush
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert I Reid
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Angela J Fought
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Women’s Health Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura Airas
- Turku PET Center and Division of Clinical Neurosciences, University of Turku, Turku 20521, Finland
- Neurocenter, Turku University Hospital, Turku 20521, Finland
| | - Orhun H Kantarci
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
3
|
Mantovani DBA, Pitombeira MS, Schuck PN, de Araújo AS, Buchpiguel CA, de Paula Faria D, M da Silva AM. Evaluation of Non-Invasive Methods for (R)-[ 11C]PK11195 PET Image Quantification in Multiple Sclerosis. J Imaging 2024; 10:39. [PMID: 38392087 PMCID: PMC10889702 DOI: 10.3390/jimaging10020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
This study aims to evaluate non-invasive PET quantification methods for (R)-[11C]PK11195 uptake measurement in multiple sclerosis (MS) patients and healthy controls (HC) in comparison with arterial input function (AIF) using dynamic (R)-[11C]PK11195 PET and magnetic resonance images. The total volume of distribution (VT) and distribution volume ratio (DVR) were measured in the gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, cerebellum, and brainstem using AIF, the image-derived input function (IDIF) from the carotid arteries, and pseudo-reference regions from supervised clustering analysis (SVCA). Uptake differences between MS and HC groups were tested using statistical tests adjusted for age and sex, and correlations between the results from the different quantification methods were also analyzed. Significant DVR differences were observed in the gray matter, white matter, putamen, pallidum, thalamus, and brainstem of MS patients when compared to the HC group. Also, strong correlations were found in DVR values between non-invasive methods and AIF (0.928 for IDIF and 0.975 for SVCA, p < 0.0001). On the other hand, (R)-[11C]PK11195 uptake could not be differentiated between MS patients and HC using VT values, and a weak correlation (0.356, p < 0.0001) was found between VTAIF and VTIDIF. Our study shows that the best alternative for AIF is using SVCA for reference region modeling, in addition to a cautious and appropriate methodology.
Collapse
Affiliation(s)
| | - Milena S Pitombeira
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | | | - Adriel S de Araújo
- Graduate Program in Computer Science, Pontificia Universidade Catolica do Rio Grande do Sul PUCRS, Porto Alegre 90619-900, Brazil
| | - Carlos Alberto Buchpiguel
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Daniele de Paula Faria
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Ana Maria M da Silva
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| |
Collapse
|
4
|
Oh J, Airas L, Harrison D, Järvinen E, Livingston T, Lanker S, Malik RA, Okuda DT, Villoslada P, de Vries HE. Neuroimaging to monitor worsening of multiple sclerosis: advances supported by the grant for multiple sclerosis innovation. Front Neurol 2023; 14:1319869. [PMID: 38107636 PMCID: PMC10722910 DOI: 10.3389/fneur.2023.1319869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Key unmet needs in multiple sclerosis (MS) include detection of early pathology, disability worsening independent of relapses, and accurate monitoring of treatment response. Collaborative approaches to address these unmet needs have been driven in part by industry-academic networks and initiatives such as the Grant for Multiple Sclerosis Innovation (GMSI) and Multiple Sclerosis Leadership and Innovation Network (MS-LINK™) programs. We review the application of recent advances, supported by the GMSI and MS-LINK™ programs, in neuroimaging technology to quantify pathology related to central pathology and disease worsening, and potential for their translation into clinical practice/trials. GMSI-supported advances in neuroimaging methods and biomarkers include developments in magnetic resonance imaging, positron emission tomography, ocular imaging, and machine learning. However, longitudinal studies are required to facilitate translation of these measures to the clinic and to justify their inclusion as endpoints in clinical trials of new therapeutics for MS. Novel neuroimaging measures and other biomarkers, combined with artificial intelligence, may enable accurate prediction and monitoring of MS worsening in the clinic, and may also be used as endpoints in clinical trials of new therapies for MS targeting relapse-independent disease pathology.
Collapse
Affiliation(s)
- Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Daniel Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD, United States
| | - Elina Järvinen
- Neurology and Immunology, Medical Unit N&I, Merck OY (an affiliate of Merck KGaA), Espoo, Finland
| | - Terrie Livingston
- Patient Solutions and Center of Excellence Strategic Engagement, EMD Serono, Inc., Rockland, MA, United States
| | - Stefan Lanker
- Neurology & Immunology, US Medical Affairs, EMD Serono Research & Development Institute, Inc., (an affiliate of Merck KGaA), Billerica, MA, United States
| | - Rayaz A. Malik
- Weill Cornell Medicine-Qatar, Research Division, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Darin T. Okuda
- Department of Neurology, Neuroinnovation Program, Multiple Sclerosis and Neuroimmunology Imaging Program, Clinical Center for Multiple Sclerosis, UT Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Villoslada
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Helga E. de Vries
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam University Medical Centers (Amsterdam UMC), Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
5
|
Kuhlmann T, Moccia M, Coetzee T, Cohen JA, Correale J, Graves J, Marrie RA, Montalban X, Yong VW, Thompson AJ, Reich DS. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol 2023; 22:78-88. [PMID: 36410373 PMCID: PMC10463558 DOI: 10.1016/s1474-4422(22)00289-7] [Citation(s) in RCA: 295] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/29/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
Traditionally, multiple sclerosis has been categorised by distinct clinical descriptors-relapsing-remitting, secondary progressive, and primary progressive-for patient care, research, and regulatory approval of medications. Accumulating evidence suggests that the clinical course of multiple sclerosis is better considered as a continuum, with contributions from concurrent pathophysiological processes that vary across individuals and over time. The apparent evolution to a progressive course reflects a partial shift from predominantly localised acute injury to widespread inflammation and neurodegeneration, coupled with failure of compensatory mechanisms, such as neuroplasticity and remyelination. Ageing increases neural susceptibility to injury and decreases resilience. These observations encourage a new consideration of the course of multiple sclerosis as a spectrum defined by the relative contributions of overlapping pathological and reparative or compensatory processes. New understanding of key mechanisms underlying progression and measures to quantify progressive pathology will potentially have important and beneficial implications for clinical care, treatment targets, and regulatory decision-making.
Collapse
Affiliation(s)
- Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany; Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Marcello Moccia
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Federico II University of Naples, Naples, Italy
| | - Timothy Coetzee
- National Multiple Sclerosis Society (USA), New York, NY, USA
| | - Jeffrey A Cohen
- Department of Neurology, Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jorge Correale
- Fleni, Department of Neurology, Buenos Aires, Argentina; Institute of Biological Chemistry and Biophysics (IQUIFIB), CONICET/UBA, Buenos Aires, Argentina
| | - Jennifer Graves
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Ruth Ann Marrie
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xavier Montalban
- Multiple Sclerosis Centre of Catalonia and Department of Neurology-Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - V Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Alan J Thompson
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, NIHR University College London Hospitals Biomedical Research Centre, Faculty of Brain Sciences, University College London, London, UK
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Misin O, Matilainen M, Nylund M, Honkonen E, Rissanen E, Sucksdorff M, Airas L. Innate Immune Cell–Related Pathology in the Thalamus Signals a Risk for Disability Progression in Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/4/e1182. [PMID: 35581004 PMCID: PMC9128041 DOI: 10.1212/nxi.0000000000001182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives Our aim was to investigate whether 18-kDa translocator protein (TSPO) radioligand binding in gray matter (GM) predicts later disability progression in multiple sclerosis (MS). Methods In this prospective imaging study, innate immune cells were investigated in the MS patient brain using PET imaging. The distribution volume ratio (DVR) of the TSPO-binding radioligand [11C]PK11195 was determined in 5 GM regions: thalamus, caudate, putamen, pallidum, and cortical GM. Volumetric brain MRI parameters were obtained for comparison. The Expanded Disability Status Scale (EDSS) score was assessed at baseline and after follow-up of 3.0 ± 0.3 (mean ± SD) years. Disability progression was defined as an EDSS score increase of 1.0 point or 0.5 point if the baseline EDSS score was ≥6.0. A forward-type stepwise logistic regression model was constructed to compare multiple imaging and clinical variables in their ability to predict later disability progression. Results The cohort consisted of 66 patients with MS and 18 healthy controls. Patients with later disability progression (n = 17) had more advanced atrophy in the thalamus, caudate, and putamen at baseline compared with patients with no subsequent worsening. TSPO binding was significantly higher in the thalamus among the patients with later worsening. The thalamic DVR was the only measured imaging variable that remained a significant predictor of disability progression in the regression model. The final model predicted disability progression with 52.9% sensitivity and 93.9% specificity with an area under the curve value of 0.82 (receiver operating characteristic curve). Discussion Increased TSPO radioligand binding in the thalamus has potential in predicting short-term disability progression in MS and seems to be more sensitive for this than GM atrophy measures.
Collapse
|
7
|
Beynon V, George IC, Elliott C, Arnold DL, Ke J, Chen H, Zhu L, Ke C, Giovannoni G, Scaramozza M, Campbell N, Bradley DP, Franchimont N, Gafson A, Belachew S. Chronic lesion activity and disability progression in secondary progressive multiple sclerosis. BMJ Neurol Open 2022; 4:e000240. [PMID: 35720980 PMCID: PMC9185385 DOI: 10.1136/bmjno-2021-000240] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/15/2022] [Indexed: 11/04/2022] Open
Abstract
Objective Slowly expanding lesions (SELs), a subgroup of chronic white matter lesions that gradually expand over time, have been shown to predict disability accumulation in primary progressive multiple sclerosis (MS) disease. However, the relationships between SELs, acute lesion activity (ALA), overall chronic lesion activity (CLA) and disability progression are not well understood. In this study, we examined the ASCEND phase III clinical trial, which compared natalizumab with placebo in secondary progressive MS (SPMS). Methods Patients with complete imaging datasets between baseline and week 108 (N=600) were analysed for SEL prevalence (the number and volume of SELs), disability progression, ALA (assessed by gadolinium-enhancing lesions and new T2-hyperintense lesions) and CLA (assessed by T1-hypointense lesion volume increase within baseline T2-non-enhancing lesions identified as SELs and non-SELs). Results CLA in both SELs and non-SELs was greater in patients with SPMS with confirmed disability progression than in those with no progression. In the complete absence of ALA at baseline and on study, SEL prevalence was significantly lower, while CLA within non-SELs remained associated with disability progression. Natalizumab decreased SEL prevalence and CLA in SELs and non-SELs compared with placebo. Conclusions This study shows that CLA in patients with SPMS is decreased but persists in the absence of ALA and is associated with disability progression, highlighting the need for therapeutics targeting all mechanisms of CLA, including smouldering inflammation and neurodegeneration. Trial registration number NCT01416181.
Collapse
Affiliation(s)
- Vanessa Beynon
- Global Research & Development, Biogen, Cambridge, Massachusetts, USA
| | - Ilena C George
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Douglas L Arnold
- NeuroRx Research, Montreal, Quebec, Canada.,McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Jun Ke
- Biostatistics, Biogen Inc, Cambridge, Massachusetts, USA
| | - Huaihou Chen
- Biostatistics, Biogen Inc, Cambridge, Massachusetts, USA
| | - Li Zhu
- Biostatistics, Biogen Inc, Cambridge, Massachusetts, USA
| | - Chunlei Ke
- Biostatistics, Biogen Inc, Cambridge, Massachusetts, USA
| | - Gavin Giovannoni
- Neuroscience and Trauma, Barts and The London School of Medicine and Dentistry Blizard Institute, London, UK
| | | | - Nolan Campbell
- Global Medical, Biogen Inc, Cambridge, Massachusetts, USA
| | | | | | - Arie Gafson
- Digital Health, Biogen Inc, Cambridge, Massachusetts, USA
| | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Microglia normally protects the central nervous system (CNS) against insults. However, their persistent activation in multiple sclerosis (MS) contributes to injury. Here, we review microglia activation in MS and their detection using positron emission tomography (PET). RECENT FINDINGS During lesion evolution and the progression of MS, microglia activity may contribute to neurotoxicity through the release of pro-inflammatory cytokines, reactive oxidative species, proteases and glutamate. A means to detect and monitor microglia activation in individuals living with MS is provided by positron emission tomography (PET) imaging using the mitochondrial 18-kDa translocator protein (TSPO) ligand. TSPO PET imaging shows increased microglial activation within the normal appearing white matter that precedes radiological signs of neurodegeneration measured by T2 lesion enlargement. PET-detected microglia activation increases with progression of MS. These findings demand the use of CNS penetrant inhibitors that affect microglia. Such therapies may include hydroxychloroquine that is recently reported in a small study to reduce the expected progression in primary progressive MS, and Bruton's tyrosine kinase inhibitors for which there are now eleven Phase 3 registered trials in MS. SUMMARY Microglial activation drives injury in MS. PET imaging with microglia-specific ligands offer new insights into progression of MS and as a monitor for treatment responses.
Collapse
|
9
|
Chauveau F, Becker G, Boutin H. Have (R)-[ 11C]PK11195 challengers fulfilled the promise? A scoping review of clinical TSPO PET studies. Eur J Nucl Med Mol Imaging 2021; 49:201-220. [PMID: 34387719 PMCID: PMC8712292 DOI: 10.1007/s00259-021-05425-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE The prototypical TSPO radiotracer (R)-[11C]PK11195 has been used in humans for more than thirty years to visualize neuroinflammation in several pathologies. Alternative radiotracers have been developed to improve signal-to-noise ratio and started to be tested clinically in 2008. Here we examined the scientific value of these "(R)-[11C]PK11195 challengers" in clinical research to determine if they could supersede (R)-[11C]PK11195. METHODS A systematic MEDLINE (PubMed) search was performed (up to end of year 2020) to extract publications reporting TSPO PET in patients with identified pathologies, excluding studies in healthy subjects and methodological studies. RESULTS Of the 288 publications selected, 152 used 13 challengers, and 142 used (R)-[11C]PK11195. Over the last 20 years, the number of (R)-[11C]PK11195 studies remained stable (6 ± 3 per year), but was surpassed by the total number of challenger studies for the last 6 years. In total, 3914 patients underwent a TSPO PET scan, and 47% (1851 patients) received (R)-[11C]PK11195. The 2 main challengers were [11C]PBR28 (24%-938 patients) and [18F]FEPPA (11%-429 patients). Only one-in-ten patients (11%-447) underwent 2 TSPO scans, among whom 40 (1%) were scanned with 2 different TSPO radiotracers. CONCLUSIONS Generally, challengers confirmed disease-specific initial (R)-[11C]PK11195 findings. However, while their better signal-to-noise ratio seems particularly useful in diseases with moderate and widespread neuroinflammation, most challengers present an allelic-dependent (Ala147Thr polymorphism) TSPO binding and genetic stratification is hindering their clinical implementation. As new challengers, insensitive to TSPO human polymorphism, are about to enter clinical evaluation, we propose this systematic review to be regularly updated (living review).
Collapse
Affiliation(s)
- Fabien Chauveau
- University of Lyon, Lyon Neuroscience Research Center (CRNL), CNRS UMR5292, INSERM U1028, University Lyon 1, Lyon, France.
| | - Guillaume Becker
- GIGA - CRC In Vivo Imaging, University Liege, Liege, Belgium
- University of Lyon, CarMeN Laboratory, INSERM U1060, University Lyon 1, Hospices Civils Lyon, Lyon, France
| | - Hervé Boutin
- Faculty of Biology Medicine and Health, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Gelibter S, Pisa M, Croese T, Finardi A, Mandelli A, Sangalli F, Colombo B, Martinelli V, Comi G, Filippi M, Furlan R. Spinal Fluid Myeloid Microvesicles Predict Disease Course in Multiple Sclerosis. Ann Neurol 2021; 90:253-265. [PMID: 34216397 DOI: 10.1002/ana.26154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In vivo measures of myeloid activity are promising biomarkers in multiple sclerosis. We previously demonstrated that cerebrospinal fluid (CSF) myeloid microvesicles are markers of microglial/macrophage activity and neuroinflammation in multiple sclerosis. Here, we aimed at investigating the diagnostic and prognostic value of myeloid microvesicles in a clinical setting. METHODS Six hundred one patients discharged with a diagnosis of neuroinflammatory, neurodegenerative, or no neurological disease were enrolled. Myeloid microvesicles were measured with flow cytometry as isolectin B4-positive events in fresh CSF. Clinical, demographical, and magnetic resonance imaging (MRI) data were collected at diagnosis (all patients) and during follow-up (n = 176). RESULTS CSF myeloid microvesicles were elevated in neuroinflammatory patients compared to the neurodegenerative and control groups. In multiple sclerosis, microvesicles were higher in patients with MRI disease activity and their concentration increased along with the number of enhancing lesions (p < 0.0001, Jonckheere-Terpstra test). CSF myeloid microvesicles were also higher in patients with higher disease activity in the month and year preceding diagnosis. Microvesicles excellently discriminated between the relapsing-remitting and control groups (receiver operator characteristic curve, area under the curve = 0.939, p < 0.0001) and between radiologically isolated syndrome and unspecific brain lesions (0.942, p < 0.0001). Furthermore, microvesicles were independent predictors of prognosis for both the relapsing-remitting and progressive groups. Microvesicles independently predicted future disease activity in relapsing-remitting patients (hazard ratio [HR] = 1.967, 95% confidence interval [CI] = 1.147-3.372), correcting for prognostic factors of standard clinical use. In the progressive group, microvesicles were independent predictors of disability accrual (HR = 10.767, 95% CI = 1.335-86.812). INTERPRETATION Our results confirm that CSF myeloid microvesicles are a clinically meaningful biomarker of neuroinflammation and microglial/macrophage activity in vivo. These findings may support a possible use in clinical practice during diagnostic workup and prognostic assessment. ANN NEUROL 2021;90:253-265.
Collapse
Affiliation(s)
- Stefano Gelibter
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Pisa
- Vita-Salute San Raffaele University, Milan, Italy
| | - Tommaso Croese
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Bruno Colombo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Preziosa P, Filippi M, Rocca MA. Chronic active lesions: a new MRI biomarker to monitor treatment effect in multiple sclerosis? Expert Rev Neurother 2021; 21:837-841. [PMID: 34236010 DOI: 10.1080/14737175.2021.1953983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
12
|
Preziosa P, Storelli L, Meani A, Moiola L, Rodegher M, Filippi M, Rocca MA. Effects of Fingolimod and Natalizumab on Brain T1-/T2-Weighted and Magnetization Transfer Ratios: a 2-Year Study. Neurotherapeutics 2021; 18:878-888. [PMID: 33483938 PMCID: PMC8423925 DOI: 10.1007/s13311-020-00997-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 11/26/2022] Open
Abstract
Fingolimod and natalizumab significantly reduce disease activity in relapsing-remitting multiple sclerosis (RRMS) and could promote tissue repair and neuroprotection. The ratio between conventional T1- and T2-weighted sequences (T1w/T2w-ratio) and magnetization transfer ratio (MTR) allow to quantify brain microstructural tissue abnormalities. Here, we compared fingolimod and natalizumab effects on brain T1w/T2w-ratio and MTR in RRMS over 2 years of treatment. RRMS patients starting fingolimod (n = 25) or natalizumab (n = 30) underwent 3T brain MRI scans at baseline (T0), month 6 (M6), month 12 (M12), and month 24 (M24). White matter (WM) lesions, normal-appearing (NA) WM, and gray matter (GM) T1w/T2w-ratio and MTR were estimated and compared between groups using linear mixed models. No baseline demographic, clinical, and MRI difference was found between groups. In natalizumab patients, lesion T1w/T2w-ratio and MTR significantly increased at M6 vs. T0 (p ≤ 0.035) and decreased at subsequent timepoints (p ≤ 0.037). In fingolimod patients, lesion T1w/T2w-ratio increased at M12 vs. T0 (p = 0.010), while MTR gradually increased at subsequent timepoints vs. T0 (p ≤ 0.027). Natalizumab stabilized NAWM and GM T1w/T2w-ratio and MTR. In fingolimod patients, NAWM T1w/T2w-ratio and MTR significantly increased at M24 vs. M12 (p ≤ 0.001). A significant GM T1w/T2w-ratio decrease at M6 vs. T0 (p = 0.014) and increase at M24 vs. M6 (p = 0.008) occurred, whereas GM MTR was significantly higher at M24 vs. previous timepoints (p ≤ 0.017) with significant between-group differences (p ≤ 0.034). Natalizumab may promote an early recovery of lesional damage and prevent microstructural damage accumulation in NAWM and GM during the first 2 years of treatment. Fingolimod enhances tissue damage recovery being visible after 6 months in lesions and after 2 years in NAWM and GM.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy.
| |
Collapse
|
13
|
Bagnato F, Gauthier SA, Laule C, Moore GRW, Bove R, Cai Z, Cohen-Adad J, Harrison DM, Klawiter EC, Morrow SA, Öz G, Rooney WD, Smith SA, Calabresi PA, Henry RG, Oh J, Ontaneda D, Pelletier D, Reich DS, Shinohara RT, Sicotte NL. Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy. J Neuroimaging 2021; 30:251-266. [PMID: 32418324 DOI: 10.1111/jon.12700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinicians involved with different aspects of the care of persons with multiple sclerosis (MS) and scientists with expertise on clinical and imaging techniques convened in Dallas, TX, USA on February 27, 2019 at a North American Imaging in Multiple Sclerosis Cooperative workshop meeting. The aim of the workshop was to discuss cardinal pathobiological mechanisms implicated in the progression of MS and novel imaging techniques, beyond brain atrophy, to unravel these pathologies. Indeed, although brain volume assessment demonstrates changes linked to disease progression, identifying the biological mechanisms leading up to that volume loss are key for understanding disease mechanisms. To this end, the workshop focused on the application of advanced magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging techniques to assess and measure disease progression in both the brain and the spinal cord. Clinical translation of quantitative MRI was recognized as of vital importance, although the need to maintain a relatively short acquisition time mandated by most radiology departments remains the major obstacle toward this effort. Regarding PET, the panel agreed upon its utility to identify ongoing pathological processes. However, due to costs, required expertise, and the use of ionizing radiation, PET was not considered to be a viable option for ongoing care of persons with MS. Collaborative efforts fostering robust study designs and imaging technique standardization across scanners and centers are needed to unravel disease mechanisms leading to progression and discovering medications halting neurodegeneration and/or promoting repair.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Department of Neurology, Feil Family Brain and Mind Institute, and Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Cornelia Laule
- Department of Radiology, Pathology, and Laboratory Medicine, Department of Physics and Astronomy, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - George R Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley Bove
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal and Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Eric C Klawiter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - William D Rooney
- Advanced Imaging Research Center, Departments of Biomedical Engineering, Neurology, and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Seth A Smith
- Radiology and Radiological Sciences and Vanderbilt University Imaging Institute, Vanderbilt University Medical Center, and Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roland G Henry
- Departments of Neurology, Radiology and Biomedical Imaging, and the UC San Francisco & Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA
| | - Jiwon Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | -
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
14
|
Preziosa P, Pagani E, Moiola L, Rodegher M, Filippi M, Rocca MA. Occurrence and microstructural features of slowly expanding lesions on fingolimod or natalizumab treatment in multiple sclerosis. Mult Scler 2020; 27:1520-1532. [DOI: 10.1177/1352458520969105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: In multiple sclerosis (MS), up to 57% of white matter lesions are chronically active. These slowly expanding lesions (SELs) contribute to disability progression. Objective: The aim of this study is to compare fingolimod and natalizumab effects on progressive linearly enlarging lesions (i.e. SELs), a putative biomarker of smouldering inflammation. Methods: Relapsing-remitting MS patients starting fingolimod ( n = 24) or natalizumab ( n = 28) underwent 3T brain magnetic resonance imaging (MRI) at baseline, months 6, 12 and 24. SELs were identified among baseline-visible lesions showing ⩾ 12.5% of annual increase, calculated by linearly fitting the Jacobian of the nonlinear deformation field between timepoints obtained combining T1- and T2-weighted scans. SEL burden, magnetization transfer ratio (MTR) and T1 signal intensity were compared using linear models. Results: The prevalences of fingolimod (75%) and natalizumab patients (46%) with ⩾ 1 SEL were not significantly different (adjusted- p = 0.08). Fingolimod group had higher SEL number and volume (adjusted- p ⩽ 0.047, not false discovery rate (FDR) survived). In both groups, SELs versus non-SELs showed lower MTR and T1 signal intensity (adjusted- p ⩽ 0.01, FDR-survived). Longitudinally, non-SEL MTR increased in both treatment groups (adjusted- p ⩽ 0.005, FDR-survived). T1 signal intensity decreased in SELs with both treatments (adjusted- p ⩽ 0.049, FDR-survived in fingolimod group) and increased in natalizumab non-SELs (adjusted- p = 0.03, FDR-survived). Conclusion: The effects of natalizumab and fingolimod on SEL occurrence seem modest, with natalizumab being slightly more effective. Both treatments may promote reparative mechanisms in stable or chronic inactive lesions.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy/Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy/Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
15
|
Kreisl WC, Kim MJ, Coughlin JM, Henter ID, Owen DR, Innis RB. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol 2020; 19:940-950. [PMID: 33098803 PMCID: PMC7912433 DOI: 10.1016/s1474-4422(20)30346-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
A growing need exists for reliable in-vivo measurement of neuroinflammation to better characterise the inflammatory processes underlying various diseases and to inform the development of novel therapeutics that target deleterious glial activity. PET is well suited to quantify neuroinflammation and has the potential to discriminate components of the neuroimmune response. However, there are several obstacles to the reliable quantification of neuroinflammation by PET imaging. Despite these challenges, PET studies have consistently identified associations between neuroimmune responses and pathophysiology in brain disorders such as Alzheimer's disease. Tissue studies have also begun to clarify the meaning of changes in PET signal in some diseases. Furthermore, although PET imaging of neuroinflammation does not have an established clinical application, novel targets are under investigation and a small but growing number of studies have suggested that this imaging modality could have a role in drug development. Future studies are needed to further improve our knowledge of the cellular mechanisms that underlie changes in PET signal, how immune response contributes to neurological disease, and how it might be therapeutically modified.
Collapse
Affiliation(s)
- William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Guerrero BL, Sicotte NL. Microglia in Multiple Sclerosis: Friend or Foe? Front Immunol 2020; 11:374. [PMID: 32265902 PMCID: PMC7098953 DOI: 10.3389/fimmu.2020.00374] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Microglia originate from myeloid progenitors in the embryonic yolk sac and play an integral role in central nervous system (CNS) development, immune surveillance and repair. The role of microglia in multiple sclerosis (MS) has been complex and controversial, with evidence suggesting that these cells play key roles in both active inflammation and remyelination. Here we will review the most recent histological classification of MS lesions as well as the evidence supporting both inflammatory and reparative functions of these cells. We will also review how microglia may yield new biomarkers for MS activity and serve as a potential target for therapy.
Collapse
Affiliation(s)
- Brooke L Guerrero
- Multiple Sclerosis and Neuroimmunology Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nancy L Sicotte
- Multiple Sclerosis and Neuroimmunology Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
17
|
Sucksdorff M, Tuisku J, Matilainen M, Vuorimaa A, Smith S, Keitilä J, Rokka J, Parkkola R, Nylund M, Rinne J, Rissanen E, Airas L. Natalizumab treatment reduces microglial activation in the white matter of the MS brain. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e574. [PMID: 31355310 PMCID: PMC6624093 DOI: 10.1212/nxi.0000000000000574] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/02/2019] [Indexed: 01/31/2023]
Abstract
Objective To evaluate whether natalizumab treatment reduces microglial activation in MS. Methods We measured microglial activation using the 18-kDa translocator protein (TSPO)-binding radioligand [11C]PK11195 and PET imaging in 10 patients with MS before and after 1 year treatment with natalizumab. Microglial activation was evaluated as the distribution volume ratio (DVR) of the specifically bound radioligand in brain white and gray matter regions of interest. MRI and disability measurements were performed for comparison. Evaluation was performed identically with 11 age- and sex-matched patients with MS who had no MS therapy. Results Natalizumab treatment reduced microglial activation in the normal-appearing white matter (NAWM; baseline DVR vs DVR after 1 year of treatment 1.25 vs 1.22, p = 0.014, Wilcoxon) and at the rim of chronic lesions (baseline DVR vs DVR after 1 year of treatment 1.24 vs 1.18, p = 0.014). In patients with MS with no treatment, there was an increase in microglial activation at the rim of chronic lesions (1.23 vs 1.27, p = 0.045). No alteration was observed in microglial activation in gray matter areas. In the untreated patient group, higher microglial activation at baseline was associated with more rapid disability progression during an average of 4 years of follow-up. Conclusions TSPO-PET imaging can be used as a tool to assess longitudinal changes in microglial activation in the NAWM and in the perilesional areas in the MS brain in vivo. Natalizumab treatment reduces the diffuse compartmentalized CNS inflammation related to brain resident innate immune cells.
Collapse
Affiliation(s)
- Marcus Sucksdorff
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Markus Matilainen
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Sarah Smith
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Joonas Keitilä
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Johanna Rokka
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Riitta Parkkola
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Marjo Nylund
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Juha Rinne
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Eero Rissanen
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Laura Airas
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| |
Collapse
|
18
|
Bauckneht M, Capitanio S, Raffa S, Roccatagliata L, Pardini M, Lapucci C, Marini C, Sambuceti G, Inglese M, Gallo P, Cecchin D, Nobili F, Morbelli S. Molecular imaging of multiple sclerosis: from the clinical demand to novel radiotracers. EJNMMI Radiopharm Chem 2019; 4:6. [PMID: 31659498 PMCID: PMC6453990 DOI: 10.1186/s41181-019-0058-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Brain PET imaging with different tracers is mainly clinically used in the field of neurodegenerative diseases and brain tumors. In recent years, the potential usefulness of PET has also gained attention in the field of MS. In fact, MS is a complex disease and several processes can be selected as a target for PET imaging. The use of PET with several different tracers has been mainly evaluated in the research setting to investigate disease pathophysiology (i.e. phenotypes, monitoring of progression) or to explore its use a surrogate end-point in clinical trials. RESULTS We have reviewed PET imaging studies in MS in humans and animal models. Tracers have been grouped according to their pathophysiological targets (ie. tracers for myelin kinetic, neuroinflammation, and neurodegeneration). The emerging clinical indication for brain PET imaging in the differential diagnosis of suspected tumefactive demyelinated plaques as well as the clinical potential provided by PET images in view of the recent introduction of PET/MR technology are also addressed. CONCLUSION While several preclinical and fewer clinical studies have shown results, full-scale clinical development programs are needed to translate molecular imaging technologies into a clinical reality that could ideally fit into current precision medicine perspectives.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Caterina Lapucci
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
- CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Matilde Inglese
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre of the Veneto Region, Department of Neurosciences DNS, University of Padua, Padua, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, Padova University Hospital, Padua, Italy
- Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| |
Collapse
|
19
|
Kaunzner UW, Kang Y, Zhang S, Morris E, Yao Y, Pandya S, Hurtado Rua SM, Park C, Gillen KM, Nguyen TD, Wang Y, Pitt D, Gauthier SA. Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain 2019; 142:133-145. [PMID: 30561514 PMCID: PMC6308309 DOI: 10.1093/brain/awy296] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/21/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic active multiple sclerosis lesions, characterized by a hyperintense rim of iron-enriched, activated microglia and macrophages, have been linked to greater tissue damage. Post-mortem studies have determined that chronic active lesions are primarily related to the later stages of multiple sclerosis; however, the occurrence of these lesions, and their relationship to earlier disease stages may be greatly underestimated. Detection of chronic active lesions across the patient spectrum of multiple sclerosis requires a validated imaging tool to accurately identify lesions with persistent inflammation. Quantitative susceptibility mapping provides efficient in vivo quantification of susceptibility changes related to iron deposition and the potential to identify lesions harbouring iron-laden inflammatory cells. The PET tracer 11C-PK11195 targets the translocator protein expressed by activated microglia and infiltrating macrophages. Accordingly, this study aimed to validate that lesions with a hyperintense rim on quantitative susceptibility mapping from both relapsing and progressive patients demonstrate a higher level of innate immune activation as measured on 11C-PK11195 PET. Thirty patients were enrolled in this study, 24 patients had relapsing remitting multiple sclerosis, six had progressive multiple sclerosis, and all patients had concomitant MRI with a gradient echo sequence and PET with 11C-PK11195. A total of 406 chronic lesions were detected, and 43 chronic lesions with a hyperintense rim on quantitative susceptibility mapping were identified as rim+ lesions. Susceptibility (relative to CSF) was higher in rim+ (2.42 ± 17.45 ppb) compared to rim- lesions (-14.6 ± 19.3 ppb, P < 0.0001). Among rim+ lesions, susceptibility within the rim (20.04 ± 14.28 ppb) was significantly higher compared to the core (-5.49 ± 14.44 ppb, P < 0.0001), consistent with the presence of iron. In a mixed-effects model, 11C-PK11195 uptake, representing activated microglia/macrophages, was higher in rim+ lesions compared to rim- lesions (P = 0.015). Validating our in vivo imaging results, multiple sclerosis brain slabs were imaged with quantitative susceptibility mapping and processed for immunohistochemistry. These results showed a positive translocator protein signal throughout the expansive hyperintense border of rim+ lesions, which co-localized with iron containing CD68+ microglia and macrophages. In conclusion, this study provides evidence that suggests that a hyperintense rim on quantitative susceptibility measure within a chronic lesion is a correlate for persistent inflammatory activity and that these lesions can be identified in the relapsing patients. Utilizing quantitative susceptibility measure to differentiate chronic multiple sclerosis lesion subtypes, especially chronic active lesions, would provide a method to assess the impact of these lesions on disease progression.
Collapse
Affiliation(s)
- Ulrike W Kaunzner
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| | - Yeona Kang
- Department of Radiology/Nuclear Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Shun Zhang
- Cornell MRI Research Lab, New York City, NY, USA
| | - Eric Morris
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| | - Yihao Yao
- Cornell MRI Research Lab, New York City, NY, USA
| | - Sneha Pandya
- Department of Radiology/Nuclear Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Sandra M Hurtado Rua
- Department of Mathematics, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, USA
| | - Calvin Park
- Yale Multiple Sclerosis Center, New Haven, CT, USA
| | | | | | - Yi Wang
- Cornell MRI Research Lab, New York City, NY, USA
| | - David Pitt
- Yale Multiple Sclerosis Center, New Haven, CT, USA
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Weill Cornell Medicine, New York City, NY, USA
| |
Collapse
|
20
|
Elliott C, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, Bernasconi C, Wei W, Belachew S, Arnold DL. Slowly expanding/evolving lesions as a magnetic resonance imaging marker of chronic active multiple sclerosis lesions. Mult Scler 2018; 25:1915-1925. [PMID: 30566027 PMCID: PMC6876256 DOI: 10.1177/1352458518814117] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Chronic lesion activity driven by smoldering inflammation is a pathological hallmark of progressive forms of multiple sclerosis (MS). Objective: To develop a method for automatic detection of slowly expanding/evolving lesions (SELs) on conventional brain magnetic resonance imaging (MRI) and characterize such SELs in primary progressive MS (PPMS) and relapsing MS (RMS) populations. Methods: We defined SELs as contiguous regions of existing T2 lesions showing local expansion assessed by the Jacobian determinant of the deformation between reference and follow-up scans. SEL candidates were assigned a heuristic score based on concentricity and constancy of change in T2- and T1-weighted MRIs. SELs were examined in 1334 RMS patients and 555 PPMS patients. Results: Compared with RMS patients, PPMS patients had higher numbers of SELs (p = 0.002) and higher T2 volumes of SELs (p < 0.001). SELs were devoid of gadolinium enhancement. Compared with areas of T2 lesions not classified as SEL, SELs had significantly lower T1 intensity at baseline and larger decrease in T1 intensity over time. Conclusion: We suggest that SELs reflect chronic tissue loss in the absence of ongoing acute inflammation. SELs may represent a conventional brain MRI correlate of chronic active MS lesions and a candidate biomarker for smoldering inflammation in MS.
Collapse
Affiliation(s)
| | - Jerry S Wolinsky
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Stephen L Hauser
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands/Institutes of Biomedical Engineering and Neurology, University College London (UCL), London, UK
| | | | - Wei Wei
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Douglas L Arnold
- NeuroRx Research, Montreal, QC, Canada/Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Stankoff B, Poirion E, Tonietto M, Bodini B. Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 2018; 28:723-734. [PMID: 30020560 PMCID: PMC8099240 DOI: 10.1111/bpa.12641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
The biological mechanisms driving disability worsening in multiple sclerosis (MS) are only partly understood. Monitoring changes in lesion load on MRI has a limited predictive value on the progression of clinical disability, and there is an essential need for novel imaging markers specific for the main candidate mechanisms underlying neurodegeneration which include failing myelin repair, innate immune cell activation and gray matter neuronal damage. Positron Emission Tomography (PET) is an imaging technology based on the injection of radiotracers directed against specific molecular targets, which has recently allowed the selective quantification in-vivo of the key biological mechanisms relevant to MS pathophysiology. Pilot PET studies performed in patients with all forms of MS allowed to revisit the contribution of MS lesions to disability worsening and showed that the evolution of lesions toward chronic activation, together with their remyelination profile were relevant predictors of disability worsening. PET offers the opportunity to bridge a critical gap between neuropathology and in-vivo imaging. This technique provides an original approach to disentangle some of the most relevant pathological components driving MS progression, to follow-up their temporal evolution, to investigate their clinical relevance and to evaluate novel therapeutics aimed to prevent disease progression.
Collapse
Affiliation(s)
- Bruno Stankoff
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| | - Emilie Poirion
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Matteo Tonietto
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Benedetta Bodini
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| |
Collapse
|
22
|
Comparison of two different methods of image analysis for the assessment of microglial activation in patients with multiple sclerosis using (R)-[N-methyl-carbon-11]PK11195. PLoS One 2018; 13:e0201289. [PMID: 30091993 PMCID: PMC6084893 DOI: 10.1371/journal.pone.0201289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022] Open
Abstract
Chronic active multiple sclerosis (MS) lesions have a rim of activated microglia/macrophages (m/M) leading to ongoing tissue damage, and thus represent a potential treatment target. Activation of this innate immune response in MS has been visualized and quantified using PET imaging with [11C]-(R)-PK11195 (PK). Accurate identification of m/M activation in chronic MS lesions requires the sensitivity to detect lower levels of activity within a small tissue volume. We assessed the ability of kinetic modeling of PK PET data to detect m/M activity in different central nervous system (CNS) tissue regions of varying sizes and in chronic MS lesions. Ten patients with MS underwent a single brain MRI and two PK PET scans 2 hours apart. Volume of interest (VOI) masks were generated for the white matter (WM), cortical gray matter (CGM), and thalamus (TH). The distribution volume (VT) was calculated with the Logan graphical method (LGM-VT) utilizing an image-derived input function (IDIF). The binding potential (BPND) was calculated with the reference Logan graphical method (RLGM) utilizing a supervised clustering algorithm (SuperPK) to determine the non-specific binding region. Masks of varying volume were created in the CNS to assess the impact of region size on the various metrics among high and low uptake regions. Chronic MS lesions were also evaluated and individual lesion masks were generated. The highest PK uptake occurred the TH and lowest within the WM, as demonstrated by the mean time activity curves. In the TH, both reference and IDIF based methods resulted in estimates that did not significantly depend on VOI size. However, in the WM, the test-retest reliability of BPND was significantly lower in the smallest VOI, compared to the estimates of LGM-VT. These observations were consistent for all chronic MS lesions examined. In this study, we demonstrate that BPND and LGM-VT are both reliable for quantifying m/M activation in regions of high uptake, however with blood input function LGM-VT is preferred to assess longitudinal m/M activation in regions of relatively low uptake, such as chronic MS lesions.
Collapse
|
23
|
Högel H, Rissanen E, Vuorimaa A, Airas L. Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 2018; 24:1399-1412. [DOI: 10.1177/1352458518791680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.
Collapse
Affiliation(s)
- Heidi Högel
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
24
|
Airas L, Nylund M, Rissanen E. Evaluation of Microglial Activation in Multiple Sclerosis Patients Using Positron Emission Tomography. Front Neurol 2018; 9:181. [PMID: 29632509 PMCID: PMC5879102 DOI: 10.3389/fneur.2018.00181] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/08/2018] [Indexed: 01/24/2023] Open
Abstract
Understanding the mechanisms underlying progression in multiple sclerosis (MS) is one of the key elements contributing to the identification of appropriate therapeutic targets for this under-managed condition. In addition to plaque-related focal inflammatory pathology typical for relapsing remitting MS there are, in progressive MS, widespread diffuse alterations in brain areas outside the focal lesions. This diffuse pathology is tightly related to microglial activation and is co-localized with signs of neurodegeneration. Microglia are brain-resident cells of the innate immune system and overactivation of microglia is associated with several neurodegenerative diseases. Understanding the role of microglial activation in relation to developing neurodegeneration and disease progression may provide a key to developing therapies to target progressive MS. 18-kDa translocator protein (TSPO) is a mitochondrial molecule upregulated in microglia upon their activation. Positron emission tomography (PET) imaging using TSPO-binding radioligands provides a method to assess microglial activation in patients in vivo. In this mini-review, we summarize the current status of TSPO imaging in the field of MS. In addition, the review discusses new insights into the potential use of this method in treatment trials and in clinical assessment of progressive MS.
Collapse
Affiliation(s)
- Laura Airas
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Marjo Nylund
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
25
|
Pacilio M, Lauri C, Prosperi D, Petitti A, Signore A. New SPECT and PET Radiopharmaceuticals for Imaging Inflammatory Diseases: A Meta-analysis of the Last 10 Years. Semin Nucl Med 2018; 48:261-276. [PMID: 29626943 DOI: 10.1053/j.semnuclmed.2017.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Modern molecular nuclear medicine is rapidly developing in the field of imaging of chronic inflammatory diseases, and many new radiopharmaceuticals have been recently described and tested in animals and man. These can detect early pathophysiological changes before the development of anatomical changes and, often, before clinical onset of symptoms. This field includes new radiopharmaceuticals for SPECT and PET use to define new strategies for imaging immune cells as well as tissue modifications induced by the inflammatory process. In this review, we present the results of a meta-analysis based on radiopharmaceuticals (for SPECT or PET) that are not commercially available and that have been used, at least once, in humans in the last 10 years.
Collapse
Affiliation(s)
- Marta Pacilio
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, Italy
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, Italy.; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Daniela Prosperi
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, Italy
| | - Agnese Petitti
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, Italy.; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, The Netherlands.
| |
Collapse
|
26
|
Bunai T, Terada T, Kono S, Yokokura M, Yoshikawa E, Futatsubashi M, Miyajima H, Ouchi Y. Neuroinflammation following disease modifying therapy in multiple sclerosis: A pilot positron emission tomography study. J Neurol Sci 2017; 385:30-33. [PMID: 29406909 DOI: 10.1016/j.jns.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Chronic activation of microglia accelerates the neurodegenerative process in multiple sclerosis (MS). Although disease modifying therapy (DMT) is reportedly effective for neuroinflammatory responses in MS, the progression of neuroinflammation after DMT remains unclear. METHODS We evaluated microglial activation in six clinically stable relapsing-remitting MS patients after DMT by quantifying changes in translocator protein (TSPO) density using PET with [11C]DPA713, a selective TSPO tracer for microglial activation. All patients underwent [11C]DPA713 PET scans twice, and the scans were conducted one year apart. The binding potential (BPND) of the tracer was estimated using a simplified reference tissue model. RESULTS [11C]DPA713 BPND measured at 6months after DMT was significantly higher in the MS group than that in the control group. Compared with the first PET measurement, the one-year PET measurement revealed significantly elevated [11C]DPA713 BPND in broader brain regions covering the temporal and parietal cortices after one year of DMT. CONCLUSIONS The current results indicate that microglial activation may proceed in the entire brain of clinically stable MS patients even after receiving DMT.
Collapse
Affiliation(s)
- Tomoyasu Bunai
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuhiro Terada
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Kono
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masamichi Yokokura
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Etsuji Yoshikawa
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | | | - Hiroaki Miyajima
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|