1
|
Elliott T, Liu KY, Hazan J, Wilson J, Vallipuram H, Jones K, Mahmood J, Gitlin-Leigh G, Howard R. Hippocampal neurogenesis in adult primates: a systematic review. Mol Psychiatry 2025; 30:1195-1206. [PMID: 39558003 DOI: 10.1038/s41380-024-02815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
It had long been considered that no new neurons are generated in the primate brain beyond birth, but recent studies have indicated that neurogenesis persists in various locations throughout the lifespan. The dentate gyrus of the hippocampus is of particular interest due to the postulated role played by neurogenesis in memory. However, studies investigating the presence of adult hippocampal neurogenesis (AHN) have reported contradictory findings, and no systematic review of the evidence has been conducted to date. We searched MEDLINE, Embase and PsycINFO on 27th June 2023 for studies on hippocampal neurogenesis in adult primates, excluding review papers. Screening, quality assessment and data extraction was done by independent co-raters. We synthesised evidence from 112 relevant papers. We found robust evidence, primarily supported by immunohistochemical examination of tissue samples and neuroimaging, for newly generated neurons, first detected in the subgranular zone of the dentate gyrus, that mature over time and migrate to the granule cell layer, where they become functionally integrated with surrounding neuronal networks. AHN has been repeatedly observed in both humans and other primates and gradually diminishes with age. Transient increases in AHN are observed following acute insults such as stroke and epileptic seizures, and following electroconvulsive therapy, and AHN is diminished in neurodegenerative conditions. Markers of AHN correlate positively with measures of learning and short-term memory, but associations with antidepressant use and mood states are weaker. Heterogeneous outcome measures limited quantitative syntheses. Further research should better characterise the neuropsychological function of neurogenesis in healthy subjects.
Collapse
Affiliation(s)
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Jemma Hazan
- Division of Psychiatry, University College London, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Jack Wilson
- Camden and Islington NHS Foundation Trust, London, UK
| | | | | | | | | | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
2
|
Hijal N, Fouani M, Awada B. Unveiling the fate and potential neuroprotective role of neural stem/progenitor cells in multiple sclerosis. Front Neurol 2024; 15:1438404. [PMID: 39634777 PMCID: PMC11614735 DOI: 10.3389/fneur.2024.1438404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic pathological conditions often induce persistent systemic inflammation, contributing to neuroinflammatory diseases like Multiple Sclerosis (MS). MS is known for its autoimmune-mediated damage to myelin, axonal injury, and neuronal loss which drive disability accumulation and disease progression, often manifesting as cognitive impairments. Understanding the involvement of neural stem cells (NSCs) and neural progenitor cells (NPCs) in the remediation of MS through adult neurogenesis (ANG) and gliogenesis-the generation of new neurons and glial cells, respectively is of great importance. Hence, these phenomena, respectively, termed ANG and gliogenesis, involve significant structural and functional changes in neural networks. Thus, the proper integration of these newly generated cells into existing circuits is not only key to understanding the CNS's development but also its remodeling in adulthood and recovery from diseases such as MS. Understanding how MS influences the fate of NSCs/NPCs and their possible neuroprotective role, provides insights into potential therapeutic interventions to alleviate the impact of MS on cognitive function and disease progression. This review explores MS, its pathogenesis, clinical manifestations, and its association with ANG and gliogenesis. It highlights the impact of altered NSCs and NPCs' fate during MS and delves into the potential benefits of its modifications. It also evaluates treatment regimens that influence the fate of NSCS/NPCs to counteract the pathology subsequently.
Collapse
Affiliation(s)
- Nora Hijal
- Department of Nursing, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Fouani
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Bassel Awada
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
3
|
Liampas A, Tseriotis VS, Artemiadis A, Zis P, Argyropoulou C, Grigoriadis N, Hadjigeorgiou GM, Vavougyios G. Adult Neoneurogenesis and Oligodendrogenesis in Multiple Sclerosis: A Systematic Review of Human and Animal Studies. Brain Connect 2024; 14:209-225. [PMID: 38534961 DOI: 10.1089/brain.2023.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Introduction: The subventricular zone promotes remyelination through activation differentiation of oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) into mature oligodendrocytes and thus in the adult brain. In multiple sclerosis (MS) this regenerative capability is halted resulting in neurodegeneration. We aimed to systematically search and synthesize evidence on mechanisms and phenomena associated with subventricular zone (SVZ) dysfunction in MS. Materials and Methods: Our systematic review was reported according to the PRISMA-ScR statement. MEDLINE, SCOPUS, ProQuest, and Google Scholar were searched using the terms "subventricular zone" and "multiple sclerosis," including English-written in vivo and postmortem studies. Results: Twenty studies were included. Thirteen studies on models of experimental autoimmune encephalomyelitis (EAE) reported among others strong stathmin immunoreactivity in the SVZ of EAE models, the role of MOG immunization in neurogenesis impairment, the effect of parenchymal OPCs and NSCs in myelin repair, and the importance of ependymal cells (E1/E2) and ciliated B1 cells in SVZ stem cell signaling. CXCR4 signaling and transcriptional profiles of SVZ microglia, Gli1 pathway, and galactin-3 were also explored. Studies in humans demonstrated microstructural SVZ damage in progressive MS and the persistence of black holes near the SVZ, whereas postmortem confirmed the generation of polysialic acid-neural cell adhesion molecule and NG2-positive progenitors through SVZ activation, SVZ stathmin immunoreactivity, Shh pathway, and Gal-3 upregulation. Discussion: Oligodendrogenesis defects translate to reduced remyelination, a hallmark of MS that determines its end-phenotype and disease course. Conclusion: The role of inflammation and subsequent SVZ microenvironment disruption is evident in MS pathology.
Collapse
Affiliation(s)
- Andreas Liampas
- Department of Neurology, Nicosia General Hospital, Nicosia, Cyprus
| | | | | | | | | | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - George Vavougyios
- Medical School, University of Cyprus, Nicosia, Cyprus
- University of Thessaly School of Health Sciences, Thessaloniki, Greece
| |
Collapse
|
4
|
Terreros-Roncal J, Flor-García M, Moreno-Jiménez EP, Rodríguez-Moreno CB, Márquez-Valadez B, Gallardo-Caballero M, Rábano A, Llorens-Martín M. Methods to study adult hippocampal neurogenesis in humans and across the phylogeny. Hippocampus 2023; 33:271-306. [PMID: 36259116 PMCID: PMC7614361 DOI: 10.1002/hipo.23474] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
The hippocampus hosts the continuous addition of new neurons throughout life-a phenomenon named adult hippocampal neurogenesis (AHN). Here we revisit the occurrence of AHN in more than 110 mammalian species, including humans, and discuss the further validation of these data by single-cell RNAseq and other alternative techniques. In this regard, our recent studies have addressed the long-standing controversy in the field, namely whether cells positive for AHN markers are present in the adult human dentate gyrus (DG). Here we review how we developed a tightly controlled methodology, based on the use of high-quality brain samples (characterized by short postmortem delays and ≤24 h of fixation in freshly prepared 4% paraformaldehyde), to address human AHN. We review that the detection of AHN markers in samples fixed for 24 h required mild antigen retrieval and chemical elimination of autofluorescence. However, these steps were not necessary for samples subjected to shorter fixation periods. Moreover, the detection of labile epitopes (such as Nestin) in the human hippocampus required the use of mild detergents. The application of this strictly controlled methodology allowed reconstruction of the entire AHN process, thus revealing the presence of neural stem cells, proliferative progenitors, neuroblasts, and immature neurons at distinct stages of differentiation in the human DG. The data reviewed here demonstrate that methodology is of utmost importance when studying AHN by means of distinct techniques across the phylogenetic scale. In this regard, we summarize the major findings made by our group that emphasize that overlooking fundamental technical principles might have consequences for any given research field.
Collapse
Affiliation(s)
- Julia Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elena P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carla B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Berenice Márquez-Valadez
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Gallardo-Caballero
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Rábano
- Neuropathology Department, CIEN Foundation, Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Spanish Research Council (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
5
|
Araújo VO, Marcelino PFS, Rabelo SR, Junior FASDL, Teixeira VGG, Eisele RR, Eisele AR, de Carvalho JPSF, Filho LBDA, de Medeiros SDP, Oliveira LF, Claudino dos Santos JC, Júnior EM. Tumefactive demyelination after covid-19 successfully treated with betainterferon 1A. Radiol Case Rep 2022; 17:4123-4127. [PMID: 36068807 PMCID: PMC9438400 DOI: 10.1016/j.radcr.2022.06.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
The Marburg variant of MS is a rare variant that leads to a severe clinical course, with a high rate of mortality or severe residual deficits and unclear pathophysiology. A 20-year-old female patient, presented at the hospital emergency with left inferior limb paresis and visual blurring. The neurologic exam showed complete and proportionate left hemiparesis with pyramidal signs and clonus, loss of proprioception and vibration in lower limbs, tactile, and painful hypoesthesia on the left side. This report describes a rare case of Marburg variant associated with COVID-19 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Julio Cesar Claudino dos Santos
- Christus University Center, Unichristus, Fortaleza, Ceará, Brazil
- Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Corresponding author.
| | | |
Collapse
|
6
|
Gault N, Szele FG. Immunohistochemical evidence for adult human neurogenesis in health and disease. WIREs Mech Dis 2021; 13:e1526. [PMID: 34730290 DOI: 10.1002/wsbm.1526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/19/2023]
Abstract
Postnatal and adult neurogenesis in the subventricular zone and subgranular zone of animals such as rodents and non-human primates has been observed with many different technical approaches. Since most techniques used in animals cannot be used in humans, the majority of human neurogenesis studies rely on postmortem immunohistochemistry. This technique is difficult in human tissue, due to poor and variable preservation of antigens and samples. Nevertheless, a survey of the literature reveals that most published studies provide evidence for childhood and adult neurogenesis in the human brain stem cell niches. There are some conflicting results even when assessing the same markers and when using the same antibodies. Focusing on immunohistochemical studies on post-mortem human sections, we discuss the relative robustness of the literature on adult neurogenesis. We also discuss the response of the subventricular and subgranular zones to human disease, showing that the two niches can respond differently and that the stage of disease impacts neurogenesis levels. Thus, we highlight strong evidence for adult human neurogenesis, discuss other work that did not find it, describe obstacles in analysis, and offer other approaches to evaluate the neurogenic potential of the subventricular and subgranular zones of Homo sapiens. This article is categorized under: Neurological Diseases > Stem Cells and Development Reproductive System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
| | - Francis G Szele
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Sobel RA, Eaton MJ, Jaju PD, Lowry E, Hinojoza JR. Anti-Myelin Proteolipid Protein Peptide Monoclonal Antibodies Recognize Cell Surface Proteins on Developing Neurons and Inhibit Their Differentiation. J Neuropathol Exp Neurol 2020; 78:819-843. [PMID: 31400116 PMCID: PMC6703999 DOI: 10.1093/jnen/nlz058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/30/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
Using a panel of monoclonal antibodies (mAbs) to myelin proteolipid protein (PLP) peptides, we found that in addition to CNS myelin, mAbs to external face but not cytoplasmic face epitopes immunostained neurons in immature human CNS tissues and in adult hippocampal dentate gyrus and olfactory bulbs, that is neural stem cell niches (NSCN). To explore the pathobiological significance of these observations, we assessed the mAb effects on neurodifferentiation in vitro. The mAbs to PLP 50-69 (IgG1κ and IgG2aκ), and 178-191 and 200-219 (both IgG1κ) immunostained live cell surfaces and inhibited neurite outgrowth of E18 rat hippocampal precursor cells and of PC12 cells, which do not express PLP. Proteins immunoprecipitated from PC12 cell extracts and captured by mAb-coated magnetic beads were identified by GeLC-MS/MS. Each neurite outgrowth-inhibiting mAb captured a distinct set of neurodifferentiation molecules including sequence-similar M6 proteins and other unrelated membrane and extracellular matrix proteins, for example integrins, Eph receptors, NCAM-1, and protocadherins. These molecules are expressed in adult human NSCN and are implicated in the pathogenesis of many chronic CNS disease processes. Thus, diverse anti-PLP epitope autoantibodies may inhibit neuronal precursor cell differentiation via multispecific recognition of cell surface molecules thereby potentially impeding endogenous neuroregeneration in NSCN and in vivo differentiation of exogenous neural stem cells.
Collapse
Affiliation(s)
- Raymond A Sobel
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Mary Jane Eaton
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Prajakta Dilip Jaju
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Eugene Lowry
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Julian R Hinojoza
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
8
|
Abstract
We aim to review the imaging appearance of fulminant demyelinating disorders of central nervous system that have different pathological features, clinical course, clinical features, and imaging findings different from classic multiple sclerosis. Routine magnetic resonance imaging (MRI) can help in accurate localization of the lesions, detection of associated lesions, and monitoring of these patients. Advanced MRI combined with routine MRI can aid in differentiation fulminant demyelinating lesions from simulating malignancy. Tumefactive demyelination lesions are located in supratentorial white matter mainly frontal and parietal regions with incomplete rim enhancement. Baló concentric sclerosis shows characteristic concentric onion skin appearance. Schilder disease is subacute or acute demyelinating disorders with one or more lesions commonly involving the centrum semiovale. Marburg disease is the most severe demyelinating disorder with diffuse infiltrative lesions and massive edema involving both the cerebral hemisphere and brain stem.
Collapse
|