1
|
Kim SJ, Cho W, Kim HJ, Na DL, Seo SW, Jung NY, Lee JH, Lee MJ, Kang H, Seong JK, Kim EJ. Distinct patterns of white matter hyperintensity and cortical thickness of CSF1R-related leukoencephalopathy compared with subcortical ischemic vascular dementia. PLoS One 2024; 19:e0308989. [PMID: 39374256 PMCID: PMC11458039 DOI: 10.1371/journal.pone.0308989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/02/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND CSF1R-related leukoencephalopathy is a type of autosomal dominant leukodystrophy caused by mutations in the colony stimulating factor 1 receptor (CSF1R) gene. Subcortical ischemic vascular dementia (SIVaD), which is caused by cerebral small vessel disease, is similar to CSF1R-related leukoencephalopathy in that it mainly affects subcortical white matter. In this study, we compared the patterns of white matter hyperintensity (WMH) and cortical thickness in CSF1R-related leukoencephalopathy with those in SIVaD. METHODS Fourteen patients with CSF1R-related leukoencephalopathy and 129 with SIVaD were retrospectively recruited from three tertiary medical centers. We extracted and visualized WMH data using voxel-based morphometry to compare the WMH distributions between the two groups. Cortical thickness was measured using a surface-based method. Statistical maps of differences in cortical thickness between the two groups were generated using a surface model, with age, sex, education, and intracranial volume as covariates. RESULTS Predominant distribution of WMH in the CSF1R-related leukoencephalopathy group was in the bilateral frontal and parietal areas, whereas the SIVaD group showed diffuse WMH involvement in the bilateral frontal, parietal, and temporal areas. Compared with the SIVaD group, the CSF1R-related leukoencephalopathy group showed more severe corpus callosum atrophy (CCA) and widespread cortical thinning. CONCLUSIONS To our knowledge, this is the first study using the automated MR measurement to capture WMH, cortical thinning, and CCA with signal changes in CSF1R-related leukoencephalopathy. It provides new evidence regarding differences in the patterns of WMH distribution and cortical thinning between CSF1R-related leukoencephalopathy and SIVaD.
Collapse
Affiliation(s)
- Seung Joo Kim
- Department of Neurology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wanzee Cho
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer Disease Convergence Research Centre, Samsung Medical Centre, Seoul, South Korea
- Departments of Health Sciences and Technology and, Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer Disease Convergence Research Centre, Samsung Medical Centre, Seoul, South Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer Disease Convergence Research Centre, Samsung Medical Centre, Seoul, South Korea
- Departments of Health Sciences and Technology and, Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Na-Yeon Jung
- Department of Neurology Pusan National University Yangsan Hospital, Pusan national University School of Medicine, Yangsan, South Korea
| | - Jae-Hyeok Lee
- Department of Neurology Pusan National University Yangsan Hospital, Pusan national University School of Medicine, Yangsan, South Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan national University School of Medicine, Yangsan, South Korea
| | - Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, South Korea
| | - Heeyoung Kang
- Department of Neurology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Joon-Kyung Seong
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
- School of Biomedical Engineering, Korea University, Seoul, South Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, South Korea
| |
Collapse
|
2
|
Kinoshita M, Oyanagi K, Matsushima A, Kondo Y, Hirano S, Ishizawa K, Ishihara K, Terada S, Inoue T, Yazawa I, Washimi Y, Yamada M, Nakayama J, Mitsuyama Y, Ikeda SI, Sekijima Y. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP): Estimation of pathological lesion stage from brain images. J Neurol Sci 2024; 461:123027. [PMID: 38805875 DOI: 10.1016/j.jns.2024.123027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a disease responsible for cognitive impairment in adult humans. It is caused by mutations in the colony stimulating factor 1 receptor gene (CSF1R) or alanyl-transfer (t) RNA synthetase 2 (AARS2) gene and affects brain white matter. Settlement of stages of the pathological brain lesions (Oyanagi et al. 2017) from the findings of brain imaging will be inevitably essential for prognostication. METHODS MRI images of eight patients with ALSP were analyzed semiquantitatively. White matter degeneration was assessed on a scale of 0 to 4 (none, patchy, large patchy, confluent, and diffuse) at six anatomical points, and brain atrophy on a scale 0 to 4 (none, slight, mild, moderate, and severe) in four anatomical areas. The scores of the two assessments were then summed to give total MRI scores of 0-40 points. Based on the scores, the MRI features were classified as Grades (0-4). Regression analysis was applied to mutual association between mRS, white matter degeneration score, brain atrophy score, the total MRI score and disease duration. RESULTS White matter degeneration score, brain atrophy score, and the total MRI score were significantly correlated with the disease duration. MRI Grades (2-4) based on the total MRI scores and the features of the images were well correlated with the pathological lesion stages (II - IV); i.e., 'large patchy' white matter degeneration in the frontal and parietal lobes (MRI Grade 2) corresponded to pathological Stage II, 'confluent' degeneration (Grade 3) to Stage III, and 'diffuse' degeneration (Grade 4) to Stage IV. CONCLUSION MRI Grades (2-4) resulted from the total MRI scores were well correlated with the pathological lesion Stages (II - IV).
Collapse
Affiliation(s)
- Michiaki Kinoshita
- Department of Neurology, Azumino Red Cross Hospital, 5685 Toyoshina, Azumino, Nagano 399-8292, Japan.
| | - Kiyomitsu Oyanagi
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Akira Matsushima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Neurology, JA Nagano Kouseiren Kakeyu-Misayama Rehabilitation Center Kakeyu Hospital, 1308 Kakeyu-onsen, Ueda, Nagano 386-0396, Japan.
| | - Yasufumi Kondo
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Shigeki Hirano
- Department of Neurology, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Keisuke Ishizawa
- Departments of Neurology and Pathology, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| | - Kenji Ishihara
- Department of Neurology, Asahi Neurology Rehabilitation Hospital, 789-1 Kurigasawa, Matsudo, Chiba 270-0022, Japan
| | - Seishi Terada
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-chou, Kita-ku, Okayama 700-8558, Japan.
| | - Teruhiko Inoue
- Psychogeriatric Center, Daigo Hospital, 1270 Nagata, Mimata-chou, Kitamorokata-gun, Miyazaki 889-1911, Japan.
| | - Ikuru Yazawa
- Faculty of Health and Medical Sciences, Tokoha University, 1230 Miyakoda-chou, Kita-Ku, Hamamatsu, Shizuoka 431-2102, Japan
| | - Yukihiko Washimi
- National Center for Geriatrics and Gerontology Hospital, 7-430 Morioka-chou, Obu, Aichi 474-8511, Japan.
| | - Mitsunori Yamada
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Yoshio Mitsuyama
- Psychogeriatric Center, Daigo Hospital, 1270 Nagata, Mimata-chou, Kitamorokata-gun, Miyazaki 889-1911, Japan.
| | - Shu-Ichi Ikeda
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
3
|
Papapetropoulos S, Gelfand JM, Konno T, Ikeuchi T, Pontius A, Meier A, Foroutan F, Wszolek ZK. Clinical presentation and diagnosis of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia: a literature analysis of case studies. Front Neurol 2024; 15:1320663. [PMID: 38529036 PMCID: PMC10962389 DOI: 10.3389/fneur.2024.1320663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Because adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare, rapidly progressive, debilitating, and ultimately fatal neurodegenerative disease, a rapid and accurate diagnosis is critical. This analysis examined the frequency of initial misdiagnosis of ALSP via comprehensive review of peer-reviewed published cases. Methods Data were extracted from a MEDLINE search via PubMed (January 1, 1980, through March 22, 2022) from eligible published case reports/series for patients with an ALSP diagnosis that had been confirmed by testing for the colony-stimulating factor-1 receptor gene (CSF1R) mutation. Patient demographics, clinical symptoms, brain imaging, and initial diagnosis data were summarized descriptively. Categorical data for patient demographics, symptoms, and brain imaging were stratified by initial diagnosis category to test for differences in initial diagnosis based on each variable. Results Data were extracted from a cohort of 291 patients with ALSP from 93 published case reports and case series. Mean (standard deviation) age of symptom onset was 43.2 (11.6) years. A family history of ALSP was observed in 59.1% of patients. Cognitive impairment (47.1%) and behavioral and psychiatric abnormalities (26.8%) were the most frequently reported initial symptoms. Of 291 total cases, an accurate initial diagnosis of ALSP was made in 72 cases (24.7%) and the most frequent initial misdiagnosis categories were frontotemporal dementia (28 [9.6%]) and multiple sclerosis (21 [7.2%]). Of the 219 cases (75.3%) that were initially mis- or undiagnosed, 206 cases (94.1%) were later confirmed as ALSP by immunohistology, imaging, and/or genetic testing; for the remaining 13 cases, no final diagnosis was reported. Initial diagnosis category varied based on age, family history, geographic region, mode of inheritance, and presenting symptoms of pyramidal or extrapyramidal motor dysfunction, behavioral and psychiatric abnormalities, cognitive impairment, and speech difficulty. Brain imaging abnormalities were common, and initial diagnosis category was significantly associated with white matter hyperintensities, white matter calcifications, and ventricular enlargement. Discussion In this literature analysis, ALSP was frequently misdiagnosed. Improving awareness of this condition and distinguishing it from other conditions with overlapping presenting symptoms is important for timely management of a rapidly progressive disease such as ALSP.
Collapse
Affiliation(s)
| | | | - Takuya Konno
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Andreas Meier
- Vigil Neuroscience, Inc., Watertown, MA, United States
| | - Farid Foroutan
- Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
4
|
Chitu V, Gökhan Ş, Stanley ER. Modeling CSF-1 receptor deficiency diseases - how close are we? FEBS J 2022; 289:5049-5073. [PMID: 34145972 PMCID: PMC8684558 DOI: 10.1111/febs.16085] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The role of colony-stimulating factor-1 receptor (CSF-1R) in macrophage and organismal development has been extensively studied in mouse. Within the last decade, mutations in the CSF1R have been shown to cause rare diseases of both pediatric (Brain Abnormalities, Neurodegeneration, and Dysosteosclerosis, OMIM #618476) and adult (CSF1R-related leukoencephalopathy, OMIM #221820) onset. Here we review the genetics, penetrance, and histopathological features of these diseases and discuss to what extent the animal models of Csf1r deficiency currently available provide systems in which to study the underlying mechanisms involved.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, N.Y. 10461, USA
| |
Collapse
|
5
|
Mickeviciute GC, Valiuskyte M, Plattén M, Wszolek ZK, Andersen O, Danylaité Karrenbauer V, Ineichen BV, Granberg T. Neuroimaging phenotypes of CSF1R-related leukoencephalopathy: Systematic review, meta-analysis, and imaging recommendations. J Intern Med 2022; 291:269-282. [PMID: 34875121 DOI: 10.1111/joim.13420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Colony-stimulating factor 1 receptor (CSF1R)-related leukoencephalopathy is a rare but fatal microgliopathy. The diagnosis is often delayed due to multifaceted symptoms that can mimic several other neurological disorders. Imaging provides diagnostic clues that help identify cases. The objective of this study was to integrate the literature on neuroimaging phenotypes of CSF1R-related leukoencephalopathy. A systematic review and meta-analysis were performed for neuroimaging findings of CSF1R-related leukoencephalopathy via PubMed, Web of Science, and Embase on 25 August 2021. The search included cases with confirmed CSF1R mutations reported under the previous terms hereditary diffuse leukoencephalopathy with spheroids, pigmentary orthochromatic leukodystrophy, and adult-onset leukoencephalopathy with axonal spheroids and pigmented glia. In 78 studies providing neuroimaging data, 195 cases were identified carrying CSF1R mutations in 14 exons and five introns. Women had a statistically significant earlier age of onset (p = 0.041, 40 vs 43 years). Mean delay between symptom onset and neuroimaging was 2.3 years. Main magnetic resonance imaging (MRI) findings were frontoparietal white matter lesions, callosal thinning, and foci of restricted diffusion. The hallmark computed tomography (CT) finding was white matter calcifications. Widespread cerebral hypometabolism and hypoperfusion were reported using positron emission tomography and single-photon emission computed tomography. In conclusion, CSF1R-related leukoencephalopathy is associated with progressive white matter lesions and brain atrophy that can resemble other neurodegenerative/-inflammatory disorders. However, long-lasting diffusion restriction and parenchymal calcifications are more specific findings that can aid the differential diagnosis. Native brain CT and brain MRI (with and without a contrast agent) are recommended with proposed protocols and pictorial examples are provided.
Collapse
Affiliation(s)
- Goda-Camille Mickeviciute
- Department of Physical Medicine and Rehabilitation, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Monika Valiuskyte
- Department of Skin and Venereal Diseases, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Michael Plattén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,School of Chemistry, Biotechnology, and Health, Royal Institute of Technology, Stockholm, Sweden
| | | | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin V Ineichen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder manifesting as gradual or progressive loss of neurological functions. Most patients present with relapsing-remitting disease courses. Extensive research over recent decades has expounded our insights into the presentations and diagnostic features of MS. Groups of genetic diseases, CADASIL and leukodystrophies, for example, have been frequently misdiagnosed with MS due to some overlapping clinical and radiological features. The delayed identification of these diseases in late adulthood can lead to severe neurological complications. Herein we discuss genetic diseases that have the potential to mimic multiple sclerosis, with highlights on clinical identification and practicing pearls that may aid physicians in recognizing MS-mimics with genetic background in clinical settings.
Collapse
Affiliation(s)
- Chueh Lin Hsu
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Chueh Hsuan Hsu
- Department of Neurology, China Medical University, Taichung, Taiwan
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Kinoshita M, Oyanagi K, Kondo Y, Ishizawa K, Ishihara K, Yoshida M, Inoue T, Mitsuyama Y, Yoshida K, Yamada M, Sekijima Y, Ikeda SI. Pathologic basis of the preferential thinning of thecorpus callosum in adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). eNeurologicalSci 2021; 22:100310. [PMID: 33553700 PMCID: PMC7844436 DOI: 10.1016/j.ensci.2021.100310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/02/2020] [Accepted: 12/31/2020] [Indexed: 01/13/2023] Open
Abstract
Background Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is an early onset dementia characterized by axonal loss in the cerebral white matter with swollen axons (spheroids). It had been reported that the preferential thinning and “focal lesions” of the corpus callosum were observed on T2-weighted MRI in ALSP patients. The present study aimed to reveal the pathologic basis of them in relation to brain lesion staging (I ~ IV: Oyanagi et al. 2017). Methods Seven autopsied brains of ALSP and five controls were neuropathologically examined. Results Even at Stage I, corpus callosum body showed evident atrophy, and the atrophy advanced with stage progression. Spheroid size and density were maximal at Stage II in both centrum semiovale and corpus callosum body, but spheroids were larger in corpus callosum body than in centrum semiovale. Microglia in the body at Stage II had a larger cytoplasm than those in centrum semiovale. But spheroids and microglia in the “focal lesions” were identical with those of centrum semiovale. Conclusion Preferential thinning of corpus callosum was considered to be formed in relation to peculiar morphological alteration of microglia there in ALSP. Instead, “focal lesions” were formed in connection with the lesions in centrum semiovale. Preferential thinning and “focal lesions” of corpus callosum in ALSP. Seven autopsied brains of ALSP and five controls were neuropathologically examined. Larger spheroids and more microglial alteration in corpus callosum than centrum semiovale. “Focal lesions” were formed in connection with the lesions in the centrum semiovale. Peculiar morphological change of microglia leads to the preferential thinning of corpus callosum.
Collapse
Affiliation(s)
- Michiaki Kinoshita
- Department of Neurology, Suwa Red Cross Hospital, 5-11-50 Kogandori, Suwa 392-8510, Japan
| | - Kiyomitsu Oyanagi
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yasufumi Kondo
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Keisuke Ishizawa
- Departments of Neurology and Pathology, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Kenji Ishihara
- Department of Internal Medicine, Ushioda General Hospital, 1-6-20 Yako, Tsurumi-ku, Yokohama 230-0001, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, 480-1195, Japan
| | - Teruhiko Inoue
- Psychogeriatric Center, Daigo Hospital, 1270 Nagata, Mimata-chou, Kitamorokata-gun, Miyazaki 889-1911, Japan
| | - Yoshio Mitsuyama
- Psychogeriatric Center, Daigo Hospital, 1270 Nagata, Mimata-chou, Kitamorokata-gun, Miyazaki 889-1911, Japan
| | - Kunihiro Yoshida
- Division of Neurogenetics, Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Mitsunori Yamada
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Shu-Ichi Ikeda
- Intractable Disease Care Center, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| |
Collapse
|
8
|
Onder H, Oguz KK, Soylemezoglu F, Varli K. Deep White Matter Lesions with Persistent Diffusion Restriction on MRI as a Diagnostic Clue: Neuroimaging of a Turkish Family with Hereditary Diffuse Leukoencephalopathy with Spheroids and Literature Review. Ann Indian Acad Neurol 2020; 23:280-288. [PMID: 32606513 PMCID: PMC7313596 DOI: 10.4103/aian.aian_474_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Hereditary diffuse leukoencephalopathy with spheroids (HDLS), first described in 1984 is a rare disorder. Generally, it presents at adulthood with dementia, motor impairment, extrapyramidal abnormalities, and epilepsy. Definitive diagnosis is made by brain biopsy. Neuroimaging studies have revealed confluent white matter lesions predominantly in the frontal lobes, corpus callosum, and corticospinal tracts on conventional magnetic resonance imaging. Only a few reports showed diffusion restriction in the cerebral white matter; furthermore, rarer reports emphasized persistent foci of diffusion restriction as a diagnostic imaging marker. Objective: Herein, we have aimed to illustrate the first biopsy-proven Turkish HDLS pedigree consisting of 18 persons in 3 generations which contained 4 affected individuals. Materials and Methods: Four individuals in the pedigree of HDLS [two affected patients (patient III-1 and patient III-2) and two unaffected individuals (patient II-4 and patient III-5)] were investigated with conventional MRI and Diffusion-weighted imaging (DWI) using 1.5 Tesla (T) scanner. All four individuals were evaluated via neurological examinations and Mini-Mental State Examination. Brain biopsy study was performed on patient III-2. Finally, an extensive literature review involving pathology investigations and neuroimaging studies of HDLS patients was conducted. Results: DWIs of two investigated patients showed deep white matter lesions with persistent diffusion restriction. Computed tomography imaging showed punctate mineralization in the lesions. Biopsy specimens of patient III-2 demonstrated axonal spheroids which were typical for HDLS. Conclusions: Via the presentation of our pedigree and literature review, we suggest HDSL as a first-line differential diagnosis in patients with undiagnosed adult-onset familial leukoencephalopathy, in particular, those with MRI lesions of frontal white matter and centrum semiovale associated with foci of diffusion restriction and mineralization. Finally, we think that the persistence of the diffusion restriction in deep white matter lesions should be kept in mind as a crucial neuroimaging sign for HDLS.
Collapse
Affiliation(s)
- Halil Onder
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kader Karli Oguz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Figen Soylemezoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kubilay Varli
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|