1
|
KamaliZonouzi S, Micieli J. DNAJC30 Mutation in a Patient with Coexisting Leber's Hereditary Optic Neuropathy and Multiple Sclerosis (Harding's Syndrome): A Case Report. Case Rep Ophthalmol 2025; 16:246-253. [PMID: 40182509 PMCID: PMC11968095 DOI: 10.1159/000545079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/01/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Patients with Leber's hereditary optic neuropathy (LHON) have a higher risk of developing multiple sclerosis (MS) than the general population. The coexistence of LHON and MS, also known as Harding's syndrome complicates the diagnosis of optic neuropathy, particularly when the underlying genetic mutation is a rare cause of LHON like DNAJC30. Case Presentation We present a 26-year-old woman with progressive, sequential, painless, bilateral visual loss which was unresponsive to steroids, and two temporally distinct episodes of neurological disturbance suggestive of central nervous system demyelination. Thorough investigations including serological tests ruled out other causes, including negative neuromyelitis optica and myelin oligodendrocyte protein (MOG) antibodies and nutritional deficiencies. MRI detected areas of demyelination within the spinal cord and brain (infratentorial and periventricular areas). After genetic analysis revealing c.152A>G (p.Tyr51Cys) mutation at the DNAJC30 gene, LHON was suggested. She was prescribed with idebenone and her visual acuity resolved to normal at 4-year follow-up. Conclusion This case further expands the clinical presentations of DNAJC30-related LHON and underscores the importance of considering LHON in patients with demyelinating syndrome presenting with severe bilateral visual loss and presumed optic neuritis unresponsive to steroids.
Collapse
Affiliation(s)
| | - Jonathan Micieli
- Department of Ophthalmology, Kensington Vision and Research Centre, Toronto, ON, Canada
- St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Alorainy J, Alorfi Y, Karanjia R, Badeeb N. A Comprehensive Review of Leber Hereditary Optic Neuropathy and Its Association with Multiple Sclerosis-Like Phenotypes Known as Harding's Disease. Eye Brain 2024; 16:17-24. [PMID: 39100385 PMCID: PMC11296356 DOI: 10.2147/eb.s470184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Leber Hereditary Optic Neuropathy (LHON) stands as a distinctive maternally inherited mitochondrial disorder marked by painless, subacute central vision loss, primarily affecting young males. This review covers the possible relationship between LHON and multiple sclerosis (MS), covering genetic mutations, clinical presentations, imaging findings, and treatment options. LHON is associated with mutations in mitochondrial DNA (mtDNA), notably m.11778G>A, m.3460G>A, and m.14484T>C, affecting complex I subunits. Beyond ocular manifestations, LHON can go beyond the eye into a multi-systemic disorder, showcasing extraocular abnormalities. Clinical presentations, varying in gender prevalence and outcomes, underscore the nature of mitochondrial optic neuropathies. Hypotheses exploring the connection between LHON and MS encompass mitochondrial DNA mutations triggering neurological diseases, immunologically mediated responses inducing demyelination, and the possibility of coincidental diseases. The research on mtDNA mutations among MS patients sheds light on potential associations with specific clinical subgroups, offering a unique perspective into the broader landscape of MS. Imaging findings, ranging from white matter alterations to cerebrospinal fluid biomarkers, further emphasize shared pathological processes between LHON-MS and classical MS. This comprehensive review contributes to the understanding of the complex relationship between LHON and MS.
Collapse
Affiliation(s)
- Jehad Alorainy
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Yara Alorfi
- Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Rustum Karanjia
- Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at UCLA, UCLA Stein Eye Institute, Los Angeles, CA, 90095-7000, USA
- Ottawa Hospital Research Institute, the Ottawa Hospital, Ottawa, Canada
- Doheny Eye Institute, Los Angeles, CA, USA
| | - Nooran Badeeb
- Department of Ophthalmology, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Vignal-Clermont C, Yu-Wai-Man P, Newman NJ, Carelli V, Moster ML, Biousse V, Subramanian PS, Wang AG, Donahue SP, Leroy BP, Sadun AA, Klopstock T, Sergott RC, Fernandez R, Chwalisz BK, Banik R, Taiel M, Roux M, Sahel JA. Safety of Lenadogene Nolparvovec Gene Therapy Over 5 Years in 189 Patients With Leber Hereditary Optic Neuropathy. Am J Ophthalmol 2022; 249:108-125. [PMID: 36496192 DOI: 10.1016/j.ajo.2022.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the safety profile of lenadogene nolparvovec (Lumevoq) in patients with Leber hereditary optic neuropathy. DESIGN Pooled analysis of safety data from 5 clinical studies. METHODS A total of 189 patients received single unilateral or bilateral intravitreal injections of a recombinant adeno-associated virus 2 (rAAV2/2) vector encoding the human wild-type ND4 gene. Adverse events (AEs) were collected throughout the studies, up to 5 years. Intraocular inflammation and increased intraocular pressure (IOP) were ocular AEs of special interest. Other assessments included ocular examinations, vector bio-dissemination, and systemic immune responses against rAAV2/2. RESULTS Almost all patients (95.2%) received 9 × 1010 viral genomes and 87.8% had at least 2 years of follow-up. Most patients (75.1%) experienced at least one systemic AE, but systemic treatment-related AEs occurred in 3 patients; none were serious. Intraocular inflammation was reported in 75.6% of lenadogene nolparvovec-treated eyes. Almost all intraocular inflammations occurred in the anterior chamber (58.8%) or in the vitreous (40.3%), and were of mild (90.3%) or moderate (8.8%) intensity; most resolved with topical corticosteroids alone. All IOP increases were mild to moderate in intensity. No AE led to study discontinuation. Bio-dissemination of lenadogene nolparvovec and systemic immune response were limited. The safety profile was comparable for patients treated bilaterally and unilaterally. CONCLUSIONS Lenadogene nolparvovec had a good overall safety profile with excellent systemic tolerability, consistent with limited bio-dissemination. The product was well tolerated, with mostly mild ocular side effects responsive to conventional ophthalmologic treatments.
Collapse
Affiliation(s)
- Catherine Vignal-Clermont
- From Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France (C.V-C.); Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France (C.V-C.).
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK (P.Y-W-M.); Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK (P.Y-W-M.); UCL Institute of Ophthalmology, University College London, London, UK (P.Y-W-M.); Moorfields Eye Hospital, London, UK
| | - Nancy J Newman
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA (P.Y-W-M.)
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy (V.C.); Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (V.C.)
| | - Mark L Moster
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA (M.L.M.)
| | - Valerie Biousse
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA (P.Y-W-M.)
| | - Prem S Subramanian
- Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA (P.S.S.)
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan (A-G.W.)
| | - Sean P Donahue
- Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA (S.P.D.)
| | - Bart P Leroy
- Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, and Department of Head & Skin, Ghent University, Ghent, Belgium (B.P.L.)
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA (A.A.S.); Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA (A.A.S.)
| | - Thomas Klopstock
- Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany (T.K.); German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (T.K.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (T.K.)
| | - Robert C Sergott
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA (M.L.M.)
| | | | - Bart K Chwalisz
- Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA (B.K.C.); Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston MA, USA (B.K.C.)
| | - Rudrani Banik
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA (R.B.)
| | | | - Michel Roux
- GenSight Biologics, Paris, France (M.T., M.R.)
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France (J-A.S.); Rothschild Foundation Hospital, Paris, France (J-A.S.); Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (J-A.S.); Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC, Paris, France (J-A.S.)
| | | |
Collapse
|
4
|
Chow-Wing-Bom HT, Callaghan MF, Wang J, Wei S, Dick F, Yu-Wai-Man P, Dekker TM. Neuroimaging in Leber Hereditary Optic Neuropathy: State-of-the-art and future prospects. Neuroimage Clin 2022; 36:103240. [PMID: 36510411 PMCID: PMC9668671 DOI: 10.1016/j.nicl.2022.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/14/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Leber Hereditary Optic Neuropathy (LHON) is an inherited mitochondrial retinal disease that causes the degeneration of retinal ganglion cells and leads to drastic loss of visual function. In the last decades, there has been a growing interest in using Magnetic Resonance Imaging (MRI) to better understand mechanisms of LHON beyond the retina. This is partially due to the emergence of gene-therapies for retinal diseases, and the accompanying expanded need for reliably quantifying and monitoring visual processing and treatment efficiency in patient populations. This paper aims to draw a current picture of key findings in this field so far, the challenges of using neuroimaging methods in patients with LHON, and important open questions that MRI can help address about LHON disease mechanisms and prognoses, including how downstream visual brain regions are affected by the disease and treatment and why, and how scope for neural plasticity in these pathways may limit or facilitate recovery.
Collapse
Affiliation(s)
- Hugo T Chow-Wing-Bom
- Institute of Ophthalmology, University College London (UCL), London, United Kingdom; Birkbeck/UCL Centre for NeuroImaging, London, United Kingdom.
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Junqing Wang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| | - Shihui Wei
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| | - Frederic Dick
- Birkbeck/UCL Centre for NeuroImaging, London, United Kingdom; Department of Psychological Sciences, Birkbeck, University of London, United Kingdom; Department of Experimental Psychology, UCL, London, United Kingdom
| | - Patrick Yu-Wai-Man
- Institute of Ophthalmology, University College London (UCL), London, United Kingdom; John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Tessa M Dekker
- Institute of Ophthalmology, University College London (UCL), London, United Kingdom; Birkbeck/UCL Centre for NeuroImaging, London, United Kingdom; Department of Experimental Psychology, UCL, London, United Kingdom
| |
Collapse
|
5
|
Saikia SJ, Nirmala SR. Identification of disease genes and assessment of eye-related diseases caused by disease genes using JMFC and GDLNN. Comput Methods Biomech Biomed Engin 2021; 25:359-370. [PMID: 34384296 DOI: 10.1080/10255842.2021.1955358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Early detection of disease genes helps humans to recover from certain gene-related diseases, like genetic eye diseases. This work identifies the possibility of eye diseasesfor the disease genes utilizing a Gaussian-activation function (G)-centric deeplearning neural network (GDLNN) model. In this work, human genes are selected by computing structural similarity and genes are clustered as disease genesand normal genes by using the JMFC clustering algorithm. Levy flight and Crossover and Mutation (LCM) centric Chicken Swarm Optimization (LCM-CSO) is employed for feature selection and GDLNN classifies the eye-related diseases for the input genes using the selected features.
Collapse
Affiliation(s)
- Samar Jyoti Saikia
- Department of Electronics and Communication Engineering, Gauhati University, Guwahati, Assam, India.,Department of Electronics and Communication Engineering, Assam Don Bosco University, Guwahati, Assam, India
| | - S R Nirmala
- Department of Electronics and Communication Engineering, Gauhati University, Guwahati, Assam, India.,School of Electronics and Communication Engineering, KLE Technological University, Hubli, Karnataka, India
| |
Collapse
|
6
|
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder manifesting as gradual or progressive loss of neurological functions. Most patients present with relapsing-remitting disease courses. Extensive research over recent decades has expounded our insights into the presentations and diagnostic features of MS. Groups of genetic diseases, CADASIL and leukodystrophies, for example, have been frequently misdiagnosed with MS due to some overlapping clinical and radiological features. The delayed identification of these diseases in late adulthood can lead to severe neurological complications. Herein we discuss genetic diseases that have the potential to mimic multiple sclerosis, with highlights on clinical identification and practicing pearls that may aid physicians in recognizing MS-mimics with genetic background in clinical settings.
Collapse
Affiliation(s)
- Chueh Lin Hsu
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Chueh Hsuan Hsu
- Department of Neurology, China Medical University, Taichung, Taiwan
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|