1
|
Bateman A, Lechner-Scott J, Bateman G, Ramadan S, Barber TJ. Computational Fluid Dynamic Simulation of the Cerebral Venous System in Multiple Sclerosis and Control Patients: Are Hemodynamic Variances Evident in Multiple Sclerosis? IEEE Trans Biomed Eng 2025; 72:1021-1030. [PMID: 39441676 DOI: 10.1109/tbme.2024.3485019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE An investigation was performed to determine the relevant hemodynamic parameters which could help assess vascular pathology in human diseases. Using these parameters, this study aims to assess if there are any hemodynamic differences in the cerebral veins of multiple sclerosis (MS) patients and controls which could impact the etiology of MS. METHODS 40 MS participants and 20 controls were recruited for this study. Magnetic resonance imaging (MRI) was performed to enable 3D geometries of the anatomy and the blood flow rates at the boundaries to be computed. Computational fluid dynamics (CFD) models were created for each participant and simulated using patient-specific boundary conditions. RESULTS The pressure drop and vascular resistance did not significantly differ between the groups. The internal jugular vein (IJV) cross-sectional area was larger in the MS group (Right IJV: p = 0.04, Left IJV: p = 0.02) and the straight sinus (ST) flow rate was higher in MS across all ages (p = 0.005) compared to controls. Vascular resistance was shown to indicate regions in the cerebral veins which could correspond to increased venous pressure. Conclusion & Significance: This study shows that the pressure and vascular resistance of the cerebral veins are unlikely to be directly related to the etiology of MS. The finding of higher ST flow could correspond to increased inflammation in the deep venous system. Resistance as a measure of vascular pathology shows promise and could be useful to holistically investigate blood flow hemodynamics in a variety of other diseases of the circulatory system.
Collapse
|
2
|
Fang Y, Sun Y, Lai T, Song X, Hu T, Zhao Y, Lin Y, Bao Q. Comparative study of 3D-T2WI vs. 3D-T2-FLAIR MRI in displaying human meningeal lymphatics vessels. Clin Radiol 2025; 81:106700. [PMID: 39462716 DOI: 10.1016/j.crad.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/29/2024]
Abstract
AIM Various magnetic resonance imaging (MRI) sequences can be utilized to visualize human meningeal lymphatic vessels (MLVs) for investigating the associations between MLVs and central nervous system (CNS) disorders. This study aimed to compare the quality of contrast-enhanced 3D-T2WI and 3D-T2-fluid-attenuated inversion recovery (FLAIR) MRI sequences to display human MLVs. MATERIALS AND METHODS Sixty-two patients (27 males, 35 females; mean age 55.8 ± 14.9 years) underwent 3D-T2WI and 3D-T2-FLAIR scan in combination with Gd-DTPA injection to show MLVs. RESULTS (1) The positivity rates of the 3D-T2WI sequence were 98.4%, 29.0%, and 46.8%, around the dural sinus, middle meningeal artery, and ethmoid sinus, respectively. The positivity rates of the 3D-T2-FLAIR sequence were 100%, 48.4%, and 66.1%, respectively. The positivity rate was significantly higher with the 3D-T2-FLAIR sequence compared with the 3D-T2WI sequence for the middle meningeal artery and ethmoid sinus regions (p < 0.05). (2) In patients with brain lesions and intracranial space-occupying lesions, the positivity rate was significantly higher with the 3D-T2-FLAIR sequence compared with the 3D-T2WI sequence for the middle meningeal artery and ethmoid sinus regions (p < 0.05). (3) The mean cross-sectional areas of MLVs around the dural sinus, middle meningeal artery, and ethmoid sinus were all higher using the 3D-T2-FLAIR sequence compared with the 3D-T2WI sequence at all three sites (p < 0.01). (4) The signal intensity was significantly higher using the 3D-T2-FLAIR sequence compared with the 3D-T2WI sequence around the dural sinus and ethmoid sinus (p < 0.001). CONCLUSION The 3D-T2-FLAIR sequence contrast-enhanced scan showed superior visualization of MLVs compared with the 3D-T2WI sequence.
Collapse
Affiliation(s)
- Y Fang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, No. 20, Chazhong Road, 350004, Fuzhou, China
| | - Y Sun
- Department of Magnetic Resonance, Hongqi Hospital Affiliated to Mudanjiang Medical University, No. 5 Tongxiang Road, Aimin District, 157009, Mudanjiang, Heilongjiang, China; Department of Radiology, Jinhua Hospital of Zhejiang University, Jinhua Municipal Central Hospital, 365 Renmin East Road, 321000, Jinhua, Zhejiang, China
| | - T Lai
- Department of Neurology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, No. 17 Hongqi Avenue, Zhanggong District, 341099, Jiangxi, China
| | - X Song
- Department of Magnetic Resonance, Hongqi Hospital Affiliated to Mudanjiang Medical University, No. 5 Tongxiang Road, Aimin District, 157009, Mudanjiang, Heilongjiang, China; Department of Medical Imaging, First Affiliated Hospital of Jiamusi University, 348 Dexiang Street, 154004, Jiamusi, Heilongjiang, China
| | - T Hu
- Department of Magnetic Resonance, Hongqi Hospital Affiliated to Mudanjiang Medical University, No. 5 Tongxiang Road, Aimin District, 157009, Mudanjiang, Heilongjiang, China
| | - Y Zhao
- Department of Magnetic Resonance, Hongqi Hospital Affiliated to Mudanjiang Medical University, No. 5 Tongxiang Road, Aimin District, 157009, Mudanjiang, Heilongjiang, China
| | - Y Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, No. 20, Chazhong Road, 350004, Fuzhou, China.
| | - Q Bao
- Department of Magnetic Resonance, Hongqi Hospital Affiliated to Mudanjiang Medical University, No. 5 Tongxiang Road, Aimin District, 157009, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
3
|
Zivadinov R, Schweser F, Jakimovski D, Bergsland N, Dwyer MG. Decoding Gray Matter Involvement in Multiple Sclerosis via Imaging. Neuroimaging Clin N Am 2024; 34:453-468. [PMID: 38942527 DOI: 10.1016/j.nic.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Multiple sclerosis (MS) is increasingly understood not only as a white matter disease but also involving both the deep and cortical gray matter (GM). GM pathology in people with MS (pwMS) includes the presence of lesions, leptomeningeal inflammation, atrophy, altered iron concentration, and microstructural changes. Studies using 7T and 3T MR imaging with optimized protocols established that GM damage is a principal driver of disease progression in pwMS. Future work is needed to incorporate the assessment of these GM imaging biomarkers into the clinical workup of pwMS and the assessment of treatment efficacy.
Collapse
Affiliation(s)
- Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Ferdinand Schweser
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
4
|
Jakimovski D, Zivadinov R, Qureshi F, Ramanathan M, Weinstock-Guttman B, Tavazzi E, Dwyer MG, Bergsland N. Serum Biomarker Signatures of Choroid Plexus Volume Changes in Multiple Sclerosis. Biomolecules 2024; 14:824. [PMID: 39062538 PMCID: PMC11275042 DOI: 10.3390/biom14070824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Increased choroid plexus (CP) volume has been recently implicated as a potential predictor of worse multiple sclerosis (MS) outcomes. The biomarker signature of CP changes in MS are currently unknown. To determine the blood-based biomarker characteristics of the cross-sectional and longitudinal MRI-based CP changes in a heterogeneous group of people with MS (pwMS), a total of 202 pwMS (148 pwRRMS and 54 pwPMS) underwent MRI examination at baseline and at a 5-year follow-up. The CP was automatically segmented and subsequently refined manually in order to obtain a normalized CP volume. Serum samples were collected at both timepoints, and the concentration of 21 protein measures relevant to MS pathophysiology were determined using the Olink™ platform. Age-, sex-, and BMI-adjusted linear regression models explored the cross-sectional and longitudinal relationships between MRI CP outcomes and blood-based biomarkers. At baseline, there were no significant proteomic predictors of CP volume, while at follow-up, greater CP volume was significantly associated with higher neurofilament light chain levels, NfL (standardized β = 0.373, p = 0.001), and lower osteopontin levels (standardized β = -0.23, p = 0.02). Higher baseline GFAP and lower FLRT2 levels were associated with future 5-year CP % volume expansion (standardized β = 0.277, p = 0.004 and standardized β = -0.226, p = 0.014, respectively). The CP volume in pwMS is associated with inflammatory blood-based biomarkers of neuronal injury (neurofilament light chain; NfL) and glial activation such as GFAP, osteopontin, and FLRT2. The expansion of the CP may play a central role in chronic and compartmentalized inflammation and may be driven by glial changes.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
- Wynn Hospital, Mohawk Valley Health System (MVHS), Utica, NY 13502, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | | | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Eleonora Tavazzi
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Jakimovski D, Qureshi F, Ramanathan M, Jalaleddini K, Ghoreyshi A, Dwyer MG, Bergsland N, Weinstock-Guttman B, Zivadinov R. Glial cell injury and atrophied lesion volume as measures of chronic multiple sclerosis inflammation. J Neurol Sci 2024; 461:123055. [PMID: 38761669 DOI: 10.1016/j.jns.2024.123055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Atrophied lesion volume (aLV), a proposed biomarker of disability progression in multiple sclerosis (MS) and transition into progressive MS (PMS), depicts chronic periventricular white matter (WM) pathology. Meningeal infiltrates, imaged as leptomeningeal contrast enhancement (LMCE), are linked with greater cortical pathology. OBJECTIVES To determine the relationship between serum-derived proteomic data with the development of aLV and LMCE in a heterogeneous group of people with MS (pwMS). METHODS Proteomic and MRI data for 202 pwMS (148 clinically isolated syndrome /relapsing-remitting MS and 54 progressive MS (PMS)) were acquired at baseline and at 5.4-year follow-up. The concentrations of 21 proteins related to multiple MS pathophysiology pathways were derived using a custom-developed Proximity Extension Assay on the Olink™ platform. The accrual of aLV was determined as the volume of baseline T2-weighted lesions that were replaced by cerebrospinal fluid over the follow-up. Regression models and age-adjusted analysis of covariance (ANCOVA) were used. RESULTS Older age (standardized beta = 0.176, p = 0.022), higher glial fibrillary acidic protein (standardized beta = 0.312, p = 0.001), and lower myelin oligodendrocyte glycoprotein levels (standardized beta = -0.271, p = 0.002) were associated with accrual of aLV over follow-up. This relationship was driven by the pwPMS population. The presence of LMCE at the follow-up visit was not predicted by any baseline proteomic biomarker nor cross-sectionally associated with any protein concentration. CONCLUSION Proteomic markers of glial activation are associated with chronic lesional WM pathology (measured as aLV) and may be specific to the progressive MS phenotype. LMCE presence in MS does not appear to relate to proteomic measures.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | | | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | | | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
6
|
Marchi L, Mariottini A, Viti V, Bianchi A, Nozzoli C, Repice AM, Boncompagni R, Ginestroni A, Damato V, Barilaro A, Chiti S, Saccardi R, Fainardi E, Massacesi L. Leptomeningeal enhancement in multiple sclerosis: a focus on patients treated with hematopoietic stem cell transplantation. Front Neurol 2024; 15:1373385. [PMID: 38899059 PMCID: PMC11186296 DOI: 10.3389/fneur.2024.1373385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Background Leptomeningeal enhancement (LME) is considered an MRI marker of leptomeningeal inflammation in inflammatory neurological disorders, including multiple sclerosis (MS). To our knowledge, no disease-modifying therapies (DMTs) have been demonstrated to affect LME number or morphology so far. Methods Monocentric study investigating the frequency and number of LME in a cohort of people with (pw)MS who performed a 3 T brain MRI with a standardized protocol (including a post-contrast FLAIR sequence), and exploring the impact of autologous hematopoietic stem cell transplantation (AHSCT) on this marker. In a longitudinal pilot study, consecutive MRIs were also analyzed in a subgroup of pwMS, including patients evaluated both pre- and post-AHSCT. Results Fifty-five pwMS were included: 24/55 (44%) had received AHSCT (AHSCT group) and 31 other treatments (CTRL group). At least one LME was identified in 19/55 (35%) cases (42 and 29% in the AHSCT and CTRL groups, respectively; p = 0.405). In the AHSCT group, LME number correlated with age at AHSCT (R = 0.50; p = 0.014), but not with age at post-treatment MRI. In the longitudinal pilot study (n = 8), one LME disappeared following AHSCT in 1/4 patients, whereas LME number was unchanged in the remaining four pwMS from the CTRL group. Discussion These results suggest that AHSCT may affect development and persistence of LME, strengthening the indication for early use of effective therapies bioavailable within the central nervous system (CNS), and therefore potentially targeting compartmentalized inflammation.
Collapse
Affiliation(s)
- Leonardo Marchi
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Alice Mariottini
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Center, Careggi University Hospital, Florence, Italy
| | - Vittorio Viti
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
| | - Andrea Bianchi
- Neuroradiology Unit, Careggi University Hospital, Florence, Italy
| | - Chiara Nozzoli
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Anna Maria Repice
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Center, Careggi University Hospital, Florence, Italy
| | - Riccardo Boncompagni
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | | | - Valentina Damato
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Center, Careggi University Hospital, Florence, Italy
| | - Alessandro Barilaro
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Center, Careggi University Hospital, Florence, Italy
| | - Stefano Chiti
- Health Physics Unit, Careggi University Hospital, Florence, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Careggi University Hospital, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Luca Massacesi
- Department of Neurosciences, Drug and Child Health, University of Florence, Florence, Italy
- Department of Neurology 2 and Tuscan Region Multiple Sclerosis Referral Center, Careggi University Hospital, Florence, Italy
| |
Collapse
|
7
|
Harrison DM, Allette YM, Zeng Y, Cohen A, Dahal S, Choi S, Zhuo J, Hua J. Meningeal contrast enhancement in multiple sclerosis: Assessment of field strength, acquisition delay, and clinical relevance. PLoS One 2024; 19:e0300298. [PMID: 38809920 PMCID: PMC11135724 DOI: 10.1371/journal.pone.0300298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND/PURPOSE Leptomeningeal enhancement (LME) on post-contrast FLAIR is described as a potential biomarker of meningeal inflammation in multiple sclerosis (MS). Here we report an assessment of the impact of MRI field strength and acquisition timing on meningeal contrast enhancement (MCE). METHODS This was a cross-sectional, observational study of 95 participants with MS and 17 healthy controls (HC) subjects. Each participant underwent an MRI of the brain on both a 7 Tesla (7T) and 3 Tesla (3T) MRI scanner. 7T protocols included a FLAIR image before, soon after (Gd+ Early 7T FLAIR), and 23 minutes after gadolinium (Gd+ Delayed 7T FLAIR). 3T protocol included FLAIR before and 21 minutes after gadolinium (Gd+ Delayed 3T FLAIR). RESULTS LME was seen in 23.3% of participants with MS on Gd+ Delayed 3T FLAIR, 47.4% on Gd+ Early 7T FLAIR (p = 0.002) and 57.9% on Gd+ Delayed 7T FLAIR (p < 0.001 and p = 0.008, respectively). The count and volume of LME, leptomeningeal and paravascular enhancement (LMPE), and paravascular and dural enhancement (PDE) were all highest for Gd+ Delayed 7T FLAIR and lowest for Gd+ Delayed 3T FLAIR. Non-significant trends were seen for higher proportion, counts, and volumes for LME and PDE in MS compared to HCs. The rate of LMPE was different between MS and HCs on Gd+ Delayed 7T FLAIR (98.9% vs 82.4%, p = 0.003). MS participants with LME on Gd+ Delayed 7T FLAIR were older (47.6 (10.6) years) than those without (42.0 (9.7), p = 0.008). CONCLUSION 7T MRI and a delay after contrast injection increased sensitivity for all forms of MCE. However, the lack of difference between groups for LME and its association with age calls into question its relevance as a biomarker of meningeal inflammation in MS.
Collapse
Affiliation(s)
- Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, United States of America
| | - Yohance M. Allette
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, United States of America
- Department of Neurology, Penn State University–Hershey School of Medicine, Hershey, Pennsylvania, United States of America
| | - Yuxin Zeng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amanda Cohen
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shishir Dahal
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Seongjin Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jun Hua
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Harrison DM, Allette YM, Zeng Y, Cohen A, Dahal S, Choi S, Zhuo J, Hua J. Meningeal contrast enhancement in multiple sclerosis: assessment of field strength, acquisition delay, and clinical relevance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.04.24303491. [PMID: 38496664 PMCID: PMC10942534 DOI: 10.1101/2024.03.04.24303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background/Purpose Leptomeningeal enhancement (LME) on post-contrast FLAIR is described as a potential biomarker of meningeal inflammation in multiple sclerosis (MS). Here we report a comprehensive assessment of the impact of MRI field strength and acquisition timing on meningeal contrast enhancement (MCE). Methods This was a cross-sectional, observational study of 95 participants with MS and 17 healthy controls (HC) subjects. Each participant underwent an MRI of the brain on both a 7 Tesla (7T) and 3 Tesla (3T) MRI scanner. 7T protocols included a FLAIR image before, soon after (Gd+ Early 7T FLAIR), and 23 minutes after gadolinium (Gd+ Delayed 7T FLAIR). 3T protocol included FLAIR before and 21 minutes after gadolinium (Gd+ Delayed 3T FLAIR). Results LME was seen in 23.3% of participants with MS on Gd+ Delayed 3T FLAIR, 47.4% on Gd+ Early 7T FLAIR (p = 0.002) and 57.9% on Gd+ Delayed 7T FLAIR (p < 0.001 and p = 0.008, respectively). The count and volume of LME, leptomeningeal and paravascular enhancement (LMPE), and paravascular and dural enhancement (PDE) were all highest for Gd+ Delayed 7T FLAIR and lowest for Gd+ Delayed 3T FLAIR. Non-significant trends were seen for higher proportion, counts, and volumes for LME and PDE in MS compared to HCs. The rate of LMPE was different between MS and HCs on Gd+ Delayed 7T FLAIR (98.9% vs 82.4%, p = 0.003). MS participants with LME on Gd+ Delayed 7T FLAIR were older (47.6 (10.6) years) than those without (42.0 (9.7), p = 0.008). Conclusion 7T MRI and a delay after contrast injection increased sensitivity for all forms of MCE. However, the lack of difference between groups for LME and its association with age calls into question its relevance as a biomarker of meningeal inflammation in MS.
Collapse
Affiliation(s)
- Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, USA
| | - Yohance M. Allette
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, Maryland, USA
- Department of Neurology, Penn State University – Hershey School of Medicine, Hershey, Pennsylvania, USA
| | - Yuxin Zeng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amanda Cohen
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shishir Dahal
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Seongjin Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Ananthavarathan P, Sahi N, Chard DT. An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression. Expert Rev Neurother 2024; 24:201-216. [PMID: 38235594 DOI: 10.1080/14737175.2024.2304116] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION While magnetic resonance imaging (MRI) is established in diagnosing and monitoring disease activity in multiple sclerosis (MS), its utility in predicting and monitoring disease progression is less clear. AREAS COVERED The authors consider changing concepts in the phenotypic classification of MS, including progression independent of relapses; pathological processes underpinning progression; advances in MRI measures to assess them; how well MRI features explain and predict clinical outcomes, including models that assess disease effects on neural networks, and the potential role for machine learning. EXPERT OPINION Relapsing-remitting and progressive MS have evolved from being viewed as mutually exclusive to having considerable overlap. Progression is likely the consequence of several pathological elements, each important in building more holistic prognostic models beyond conventional phenotypes. MRI is well placed to assess pathogenic processes underpinning progression, but we need to bridge the gap between MRI measures and clinical outcomes. Mapping pathological effects on specific neural networks may help and machine learning methods may be able to optimize predictive markers while identifying new, or previously overlooked, clinically relevant features. The ever-increasing ability to measure features on MRI raises the dilemma of what to measure and when, and the challenge of translating research methods into clinically useable tools.
Collapse
Affiliation(s)
- Piriyankan Ananthavarathan
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Nitin Sahi
- Department of Neuroinflammation, University College London Queen Square Multiple Sclerosis Centre, London, UK
| | - Declan T Chard
- Clinical Research Associate & Consultant Neurologist, Institute of Neurology - Queen Square Multiple Sclerosis Centre, London, UK
| |
Collapse
|
10
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Dahal S, Allette YM, Naunton K, Harrison DM. A pilot trial of ocrelizumab for modulation of meningeal enhancement in multiple sclerosis. Mult Scler Relat Disord 2024; 81:105344. [PMID: 38035495 PMCID: PMC10843730 DOI: 10.1016/j.msard.2023.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/24/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Autopsy data suggests that meningeal inflammation in multiple sclerosis (MS) is driven by CD20+ B-cells. Ocrelizumab is an anti-CD20 monoclonal antibody, and thus could potentially ameliorate meningeal inflammation in MS. Leptomeningeal enhancement (LME) on MRI is suggested as a surrogate biomarker of meningeal inflammation in MS, and thus may be a way of monitoring for this treatment effect. OBJECTIVES To determine if ocrelizumab impacts meningeal enhancement (ME) on 7T MRI in MS. METHODS Twenty-two patients with MS started on ocrelizumab by their treating physician were enrolled into this single-center, open-label, prospective trial. Participants underwent 7T MRI of the brain prior to first infusion, with screening for the presence of LME. Fourteen patients (48 ± 11 years; 11 women) had LME on the baseline scan and were invited to return for an additional 7T MRI after 1 year of treatment. Fourteen MS patients (49 ± 10 years; 11 women) on non-CD20 treatment from a separate observational cohort of annual 7T MRIs were used for comparison - matched for LME at baseline, age, and sex. Post-contrast FLAIR and subtraction images were reviewed for LME and paravascular and dural enhancement (PDE). RESULTS All subjects in the ocrelizumab and comparison groups had LME and PDE on their baseline scan. At the beginning of the study the mean number of foci of LME and PDE in the study group were 2.3 ± 1.7 and 6.6 ± 3.9 respectively. Mean LME and PDE count for the comparison group were 1.7 ± 1.5 and 7.8 ± 5.5. Mean volume of LME in the study group was 50.5 mm3 ± 65.0 mm3 and that of the PDE was 866 mm3 ± 937.9. Mean volume of LME and PDE for comparison group were 28.4 mm3 ± 36.0 and 885 mm3 ± 947.7 respectively. At follow-up, the number of patients with LME decreased to 8 (57 %) in both groups, whereas the proportion of patients with PDE was unchanged. Minimal mean change in the number of LME after 1 year were seen in both the study group (0.07 ± 2.9, p = 0.97) and comparison group (-0.71 ± 1.5, p = 0.08). Minimal mean change was seen in the volume of LME in both the study group (-21.91 mm3 ± 77.66, p = 0.27) and comparison group (3.4 mm3 ± 32.11, p = 0.77). There was minimal change in the mean number of foci of PDE after 1 year in both the study group (-0.71 ± 2.36, p = 0.32) and in the comparison group (-0.17 ± 3.89, p = 0.15). Mean change in volume of PDE was measurable, but not significant in both the study group (-397.1 mm3 ±959.6, p = 0.80) and in the comparison group (-417.0 mm3 ± 922.7) (p = 0.80). Comparisons between the changes in foci count and volume for both LME and PDE in the study versus comparison groups showed no significant differences. CONCLUSION In this small pilot trial, ocrelizumab did not significantly reduce the number or volume of foci of LME or PDE in MS patients.
Collapse
Affiliation(s)
- Shishir Dahal
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States
| | - Yohance M Allette
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD, United States
| | - Kerry Naunton
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, 110 S Paca St, 3rd Floor, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD, United States.
| |
Collapse
|
12
|
Cacciaguerra L, Rocca MA, Filippi M. Understanding the Pathophysiology and Magnetic Resonance Imaging of Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Korean J Radiol 2023; 24:1260-1283. [PMID: 38016685 PMCID: PMC10700997 DOI: 10.3348/kjr.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 11/30/2023] Open
Abstract
Magnetic resonance imaging (MRI) has been extensively applied in the study of multiple sclerosis (MS), substantially contributing to diagnosis, differential diagnosis, and disease monitoring. MRI studies have significantly contributed to the understanding of MS through the characterization of typical radiological features and their clinical or prognostic implications using conventional MRI pulse sequences and further with the application of advanced imaging techniques sensitive to microstructural damage. Interpretation of results has often been validated by MRI-pathology studies. However, the application of MRI techniques in the study of neuromyelitis optica spectrum disorders (NMOSD) remains an emerging field, and MRI studies have focused on radiological correlates of NMOSD and its pathophysiology to aid in diagnosis, improve monitoring, and identify relevant prognostic factors. In this review, we discuss the main contributions of MRI to the understanding of MS and NMOSD, focusing on the most novel discoveries to clarify differences in the pathophysiology of focal inflammation initiation and perpetuation, involvement of normal-appearing tissue, potential entry routes of pathogenic elements into the CNS, and existence of primary or secondary mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Laura Cacciaguerra
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
13
|
Vercellino M, Costantini G, Cogoni M, Lequio L, Sciortino P, De Negri F, Marasciulo S, Valentini C, Bosa C, Garelli P, Rolando A, Calvo A, Morana G, Cavalla P. Association of MRI leptomeningeal enhancement with disability worsening in progressive multiple sclerosis: A clinical and post-mortem study. Mult Scler 2023; 29:1526-1539. [PMID: 37740714 DOI: 10.1177/13524585231199031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
BACKGROUND Leptomeningeal enhancement (LME) has been described as a biomarker of meningeal inflammation in multiple sclerosis (MS). OBJECTIVE The aim of this study was to (1) assess if LME is predictive of disability worsening in progressive MS (pMS) patients and (2) investigate the pathological substrates of LME in an independent post-mortem MS series. METHODS In total, 115 pMS patients were imaged yearly with 1.5T MRI, using post-contrast CUBE 3D FLAIR for LME detection. Endpoint: to identify the baseline variables predictive of confirmed disability worsening (CDW) at 24 months follow-up. Post-mortem, inflammation, and structural changes of the leptomeninges were assessed in 12 MS/8 control brains. RESULTS LME (27% of patients at baseline) was associated with higher EDSS and lower brain volume (nBV). LME was unchanged in most patients over follow-up. LME at baseline MRI was independently associated with higher risk of 24 months CDW (HR 3.05, 95% CI 1.36-6.84, p = 0.007) in a Cox regression, including age, nBV, T2 lesion volume, high-efficacy treatments, and MRI disease activity. Post-mortem, focal structural changes (fibrosis) of the leptomeninges were observed in MS, usually associated with inflammation (Kendall's Tau 0.315, p < 0.0001). CONCLUSIONS LME is frequently detected in pMS patients using 1.5T MRI and is independently predictive of disability progression. LME could result from both focal leptomeningeal post-inflammatory fibrosis and inflammation.
Collapse
Affiliation(s)
- Marco Vercellino
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino 10126, Italy
| | | | - Maurizio Cogoni
- SC Neuroradiologia, Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Laura Lequio
- SC Neuroradiologia, Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Paola Sciortino
- SC Neuroradiologia, Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Federica De Negri
- SC Neuroradiologia, Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Stella Marasciulo
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy/Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Consuelo Valentini
- SC Neuroradiologia, Dipartimento di Diagnostica per Immagini e Radiologia Interventistica, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Chiara Bosa
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy/Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Paola Garelli
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy/Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Anna Rolando
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy/Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Andrea Calvo
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy/Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Giovanni Morana
- Dipartimento di Neuroscienze "Rita Levi Montalcini," Università di Torino, Torino, Italy
| | - Paola Cavalla
- MS Center and Neurologia I U, Dipartimento di Neuroscienze e Salute Mentale, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
14
|
Tomura N, Saginoya T, Sanpei T, Konno T, Fujihara K. Contrast-enhanced double inversion recovery sequence for patients with multiple sclerosis: feasibility of subtraction images between pre- and post-contrast images. Acta Radiol 2023; 64:719-724. [PMID: 35306900 DOI: 10.1177/02841851221080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Few reports have examined the feasibility of a post-contrast double inversion recovery (DIR) magnetic resonance (MR) sequence in patients with multiple sclerosis (MS) because of partial or complete signal loss of enhancing MS lesions. PURPOSE To compare subtracted images of DIR (pre-contrast - post-contrast DIR images) with contrast enhanced T1-weighted (CE-T1W) images in the depiction of contrast enhancement of MS lesions. MATERIAL AND METHODS In total, 27 patients were included. Two neuroradiologists interpreted both images of CE-T1W imaging and subtracted DIR, and interpretation of the images was classified into a score of 1-5 (from 5, definitely superior contrast of lesions on DIR subtraction compared to conventional CE-T1W imaging, to 1, definitely superior contrast of lesions on CE-T1W imaging. The interrater agreement (κ coefficient) was measured. The signal-to-noise ratio (SNR) and contrast-noise-ratio (CNR) of the lesion were compared. RESULTS A significant difference (P < 0.001) in scoring was seen between conventional CE-T1W imaging (2.1 ± 1.5 with one reviewer and 2.4 ± 1.5 with the other) and DIR subtraction (4.4 ± 1.0 with one reviewer and 4.7 ± 0.8 with the other). SNR from conventional CE-T1W imaging (24.8 ± 14.7) was significantly superior to that from DIR subtraction (4.0 ± 1.0; P < 0.001). CNR in DIR subtraction (326.4 ± 250.0) was significantly superior to that in conventional CE-T1W imaging (0.8 ± 5.5; P < 0.001). For interrater agreement in the evaluation of contrast enhancement of the lesions, κ coefficients were 0.84 for conventional CE-T1W imaging and 0.72 for DIR subtraction. CONCLUSION Subtracted DIR image enables more obvious contrast enhancement of the MS lesions compared with conventional CE-T1W imaging.
Collapse
Affiliation(s)
- Noriaki Tomura
- Department of Neuroradiology, Radiology and Neurology, 13704Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama, Fukushima, Japan
| | - Toshiyuki Saginoya
- Department of Neuroradiology, Radiology and Neurology, 13704Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama, Fukushima, Japan
| | - Takashi Sanpei
- Department of Neuroradiology, Radiology and Neurology, 13704Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama, Fukushima, Japan
| | - Takashi Konno
- Department of Neuroradiology, Radiology and Neurology, 13704Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama, Fukushima, Japan
| | - Kazuo Fujihara
- Department of Neuroradiology, Radiology and Neurology, 13704Southern Tohoku Research Institute for Neuroscience, Southern Tohoku General Hospital, Koriyama, Fukushima, Japan
| |
Collapse
|
15
|
Modelling of the dilated sagittal sinuses found in multiple sclerosis suggests increased wall stiffness may be a contributing factor. Sci Rep 2022; 12:17575. [PMID: 36266424 PMCID: PMC9585051 DOI: 10.1038/s41598-022-21810-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/04/2022] [Indexed: 01/13/2023] Open
Abstract
The cross-sectional area of the superior sagittal sinus (SSS) is larger in multiple sclerosis than normal and correlates with disease severity and progression. The sinus could be enlarged due to a decrease in the pressure difference between the lumen and the subarachnoid space, an increase in wall thickness or increased wall stiffness. The cross-sectional area of the SSS and straight sinus (ST) were measured in 103 patients with multiple sclerosis and compared to 50 controls. The cross-sectional area of the SSS and ST were increased by 20% and 13% compared to the controls (p = 0.005 and 0.02 respectively). The deflection of the wall of the sinus was estimated. The change in pressure gradient, wall thickness or elastic modulus between groups was calculated by modelling the walls as simply supported beams. To account for these findings, the modelling suggests either a 70% reduction in transmural venous pressure or a 2.4 fold increase in SSS wall stiffness plus an 11% increase in wall thickness or a combination of changes. An increase in sinus pressure, although the most straight forward possibility to account for the change in sinus size may exist in only a minority of patients. An increase in sinus wall stiffness and thickness may need further investigation.
Collapse
|
16
|
Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10102604. [PMID: 36289863 PMCID: PMC9599335 DOI: 10.3390/biomedicines10102604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). The most common form of MS is a relapsing–remitting disease characterised by acute episodes of demyelination associated with the breakdown of the blood–brain barrier (BBB). In the relapsing–remitting phase there is often relative recovery (remission) from relapses characterised clinically by complete or partial resolution of neurological symptoms. In the later and progressive stages of the disease process, accrual of neurological disability occurs in a pathological process independent of acute episodes of demyelination and is accompanied by a trapped or compartmentalised inflammatory response, most notable in the connective tissue spaces of the vasculature and leptomeninges occurring behind an intact BBB. This review focuses on compartmentalised inflammation in MS and in particular, what we know about meningeal tertiary lymphoid structures (TLS; also called B cell follicles) which are organised clusters of immune cells, associated with more severe and progressive forms of MS. Meningeal inflammation and TLS could represent an important fluid or imaging marker of disease activity, whose therapeutic abrogation might be necessary to stop the most severe outcomes of disease.
Collapse
Affiliation(s)
- Rachael Kee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence:
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Owain W. Howell
- Institute of Life Sciences, Swansea University, Wales SA2 8QA, UK
| | - Denise C. Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
17
|
Zivadinov R, Jakimovski D, Ramanathan M, Benedict RHB, Bergsland N, Dwyer MG, Weinstock-Guttman B. Effect of ocrelizumab on leptomeningeal inflammation and humoral response to Epstein Barr-Virus in multiple sclerosis. A pilot study. Mult Scler Relat Disord 2022; 67:104094. [DOI: 10.1016/j.msard.2022.104094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
|
18
|
Chen Z, Liu P, Xia X, Wang L, Li X. Living on the border of the CNS: Dural immune cells in health and disease. Cell Immunol 2022; 377:104545. [DOI: 10.1016/j.cellimm.2022.104545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/31/2022]
|
19
|
Ineichen BV, Tsagkas C, Absinta M, Reich DS. Leptomeningeal enhancement in multiple sclerosis and other neurological diseases: A systematic review and Meta-Analysis. Neuroimage Clin 2022; 33:102939. [PMID: 35026625 PMCID: PMC8760523 DOI: 10.1016/j.nicl.2022.102939] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND The lack of systematic evidence on leptomeningeal enhancement (LME) on MRI in neurological diseases, including multiple sclerosis (MS), hampers its interpretation in clinical routine and research settings. PURPOSE To perform a systematic review and meta-analysis of MRI LME in MS and other neurological diseases. MATERIALS AND METHODS In a comprehensive literature search in Medline, Scopus, and Embase, out of 2292 publications, 459 records assessing LME in neurological diseases were eligible for qualitative synthesis. Of these, 135 were included in a random-effects model meta-analysis with subgroup analyses for MS. RESULTS Of eligible publications, 161 investigated LME in neoplastic neurological (n = 2392), 91 in neuroinfectious (n = 1890), and 75 in primary neuroinflammatory diseases (n = 4038). The LME-proportions for these disease classes were 0.47 [95%-CI: 0.37-0.57], 0.59 [95%-CI: 0.47-0.69], and 0.26 [95%-CI: 0.20-0.35], respectively. In a subgroup analysis comprising 1605 MS cases, LME proportion was 0.30 [95%-CI 0.21-0.42] with lower proportions in relapsing-remitting (0.19 [95%-CI 0.13-0.27]) compared to progressive MS (0.39 [95%-CI 0.30-0.49], p = 0.002) and higher proportions in studies imaging at 7 T (0.79 [95%-CI 0.64-0.89]) compared to lower field strengths (0.21 [95%-CI 0.15-0.29], p < 0.001). LME in MS was associated with longer disease duration (mean difference 2.2 years [95%-CI 0.2-4.2], p = 0.03), higher Expanded Disability Status Scale (mean difference 0.6 points [95%-CI 0.2-1.0], p = 0.006), higher T1 (mean difference 1.6 ml [95%-CI 0.1-3.0], p = 0.04) and T2 lesion load (mean difference 5.9 ml [95%-CI 3.2-8.6], p < 0.001), and lower cortical volume (mean difference -21.3 ml [95%-CI -34.7--7.9], p = 0.002). CONCLUSIONS Our study provides high-grade evidence for the substantial presence of LME in MS and a comprehensive panel of other neurological diseases. Our data could facilitate differential diagnosis of LME in clinical settings. Additionally, our meta-analysis corroborates that LME is associated with key clinical and imaging features of MS. PROSPERO No: CRD42021235026.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland.
| | - Charidimos Tsagkas
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Medicine and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Absinta
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Vita-Salute San Raffaele University, and Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Jakimovski D, Eckert SP, Zivadinov R, Weinstock-Guttman B. Considering patient age when treating multiple sclerosis across the adult lifespan. Expert Rev Neurother 2021; 21:353-364. [PMID: 33595379 DOI: 10.1080/14737175.2021.1886082] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The successful development of anti-inflammatory disease-modifying treatments (DMT) significantly improved disease outcomes and longevity of persons with multiple sclerosis (pwMS). However, the shift toward an elderly MS population has resulted with new concerns regarding DMT efficacy and safety.Areas covered: This review summarizes the evidence of an age-based decrease in the efficacy of MS DMTs and increase in pharmacovigilance concerns. The age effects on pathophysiological MS processes, immunosenescence and its relevance to DMT selection or discontinuation are also reviewed. Lastly, the authors discuss the influence of age-associated comorbidities on DMT initiation and drug-induced events.Expert opinion: There is an age discrepancy between pwMS included in regulatory drug trials and an aging real-world MS population. Most trials demonstrate significantly diminished anti-inflammatory efficacy in patients older than 40 years old. Older age is associated with a greater risk for adverse events including serious infections. Age-associated comorbidities influence the risk-benefit analysis and sometimes cause patients to discontinue DMTs. Instead of chronological age cutoffs, therefore, studies should aim at promoting biologically-based age biomarkers.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
| | - Svetlana P Eckert
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, NY, USA
| |
Collapse
|