1
|
Balshi A, Leuenberger G, Dempsey J, Manning N, Baber U, Sloane JA. Herpes Zoster Infections With Multiple Sclerosis Disease-Modifying Therapies: A Real-World Pharmacovigilance Study. Neurol Clin Pract 2025; 15:e200462. [PMID: 40083393 PMCID: PMC11902899 DOI: 10.1212/cpj.0000000000200462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025]
Abstract
Background and Objectives Immunosuppressive multiple sclerosis (MS) disease-modifying therapies (DMTs) may increase the risk of opportunistic infections such as herpes zoster (HZ). We sought to evaluate the risk of HZ across various MS DMTs using publicly available pharmacovigilance reporting data. Methods We queried the Food and Drug Administration Adverse Event Reporting System (FAERS) and OpenVigil 2.1 for reports of HZ involving immunosuppressive MS DMTs (ocrelizumab [OCR], ofatumumab [OFT], rituximab [RTX], natalizumab [NTZ], alemtuzumab, dimethyl fumarate and diroximel fumarate [DRF], fingolimod [FING], siponimod [SIP], ozanimod [OZ], mitoxantrone [MITO], cladribine [CLAD], and teriflunomide [TERF]) and calculated reporting odds ratios and their 95% CIs. Results We identified 4,210 total reports of HZ across these MS DMTs. All had disproportionally higher RORs compared with all other FAERS medications. Alemtuzumab had the greatest reporting risk (ROR; 95% CI) (11.1; 9.7-12.6), followed by OCR (9.3; 8.6-10.0), FING (5.6; 5.2-6.0), CLAD (5.3; 3.7-4.2), NTZ (4.0; 3.7-4.2), RTX (3.8; 3.5-4.1), SIP (3.2; 2.4-4.2), DRF (3.1; 2.4-4.1), OFT (3.0; 2.6-3.6), dimethyl fumarate (2.5; 2.3-2.8), OZ (2.5; 1.8-3.6), MITO (2.4; 1.6-3.6), and TERF (1.6; 1.3-1.9). Discussion Immunosuppressive MS DMTs are associated with greater HZ reporting in the FAERS. These findings emphasize the importance of pre-DMT HZ vaccination because of avoidable HZ infections.
Collapse
Affiliation(s)
- Alexandra Balshi
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and
| | - Grace Leuenberger
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and
| | - John Dempsey
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Nova Manning
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and
| | - Ursela Baber
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; and
| |
Collapse
|
2
|
Monahan R, Otani IM, Lehman HK, Mustafa SS. A second look at secondary hypogammaglobulinemia. Ann Allergy Asthma Immunol 2025; 134:269-278. [PMID: 39674275 DOI: 10.1016/j.anai.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Hypogammaglobulinemia is defined as a reduced immunoglobulin level, which can be either primary due to inborn errors of immunity or acquired in the setting of poor antibody production or increased antibody loss. Secondary hypogammaglobulinemia (SHG) should be considered in patients with a history of immunosuppressive therapy, transplant, protein loss syndromes, certain autoimmune conditions, and malignancies, as it can be associated with increased infectious risk. Appropriate history and lab-based screening in these populations can identify SHG allowing treatment and close monitoring as appropriate. Ideally, treatment focuses on control of the underlying condition or removal of iatrogenic causes of SHG. However, in many cases, treatment of the underlying condition does not reverse SHG or immunosuppressive therapy cannot be discontinued without significant risk to the patient. For these patients, strategies for risk mitigation against infectious complications include vaccination, antibiotic prophylaxis, and immunoglobulin replacement therapy. This report aims to summarize the existing and emerging data in the evaluation and management of SHG and highlight areas that require further investigation.
Collapse
Affiliation(s)
- Rose Monahan
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco Medical Center, San Francisco, California.
| | - Iris M Otani
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco Medical Center, San Francisco, California
| | - Heather K Lehman
- Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - S Shahzad Mustafa
- Division of Allergy, Immunology, Rheumatology, Rochester Regional Health, University of Rochester, Rochester, New York
| |
Collapse
|
3
|
Stoll S, Desai S, Levit E. A retrospective evaluation of seroconversion after COVID-19 during the early Omicron wave in fully vaccinated multiple sclerosis patients receiving anti-CD20 therapies. Mult Scler Relat Disord 2023; 71:104574. [PMID: 36827874 PMCID: PMC9928678 DOI: 10.1016/j.msard.2023.104574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/24/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) are commonly treated with anti-CD20 therapies. Reduced seroconversion following COVID-19 vaccination in patients receiving certain anti-CD20 therapies has been reported; however, the immune response following natural infection is poorly characterised. This study aimed to retrospectively evaluate COVID-19 antibody responses after vaccination and natural infection in patients treated with anti-CD20 therapies. METHODS We performed a retrospective review evaluating COVID-19 seroconversion and anti-spike glycoprotein antibody titres in double-vaccinated patients with MS, or related neuroinflammatory conditions, treated with anti-CD20 therapies (N = 30) with a confirmed history of natural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (n = 14) or without infection (control; n = 16). This single-centre study was performed at the Yale Multiple Sclerosis Center, where patients treated with anti-CD20 therapies (ocrelizumab, n = 21; rituximab, n = 5; ofatumumab, n = 4) were systematically checked for SARS-CoV-2 anti-spike antibody levels throughout the pandemic. Data were collected from March 2020 to March 2022. All patients had received at least two doses of a Food and Drug Administration (FDA)-approved COVID-19 vaccine. Qualitative anti-spike antibody seropositivity was determined based on test-specific laboratory reference ranges. For a subset of patients (n = 18), quantitative anti-spike antibody levels were assessed via DiaSorin LIAISON® chemiluminescence immunoassay (positive titre was defined as ≥ 13). Vaccination and infection dates were also recorded, and patients were monitored for adverse COVID-19-related health effects. RESULTS Overall, 15/30 (50.0%) patients seroconverted following double vaccination. After infection, 13/14 (92.9%) seroconverted, while 6/16 (37.5%) uninfected patients seroconverted after vaccination. For the 18 patients with quantitative anti-spike antibody titres, mean titre post-vaccination was 37.4. Mean antibody titres were significantly higher after infection: 540.3 versus 20.1 in the control group (p < 0.05). Of the 14 infected patients, 13 had mild COVID-19 symptoms and one was asymptomatic. No hospitalisations or deaths were reported. CONCLUSIONS This study reports that SARS-CoV-2 anti-spike antibody titres in double-vaccinated MS patients treated with anti-CD20 therapies were significantly increased post-infection compared with the control group. Patients treated with anti-CD20 therapy who had confirmed infections displayed mild or asymptomatic infection. These results provide reassurance that anti-CD20 therapies in double-vaccinated patients do not preclude an appropriate SARS-CoV-2 antibody response post-infection.
Collapse
Affiliation(s)
- Sharon Stoll
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Shree Desai
- Yale University and Yale New Haven Hospital, New Haven, CT, USA
| | - Elle Levit
- Yale University and Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
4
|
Faissner S, Gold R. Efficacy and Safety of Multiple Sclerosis Drugs Approved Since 2018 and Future Developments. CNS Drugs 2022; 36:803-817. [PMID: 35869335 PMCID: PMC9307218 DOI: 10.1007/s40263-022-00939-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Multiple sclerosis treatment made substantial headway during the last two decades with the implementation of therapeutics with new modes of action and routes of application. We are now in the situation that second-generation molecules, approved since 2018, are on the market, characterized by reduced side effects using a more tailored therapeutic approach. Diroximel fumarate is a second-generation fumarate with reduced gastrointestinal side effects. Moreover, several novel, selective, sphingosine-1-phosphate receptor modulators with reduced off-target effects have been developed; namely siponimod, ozanimod, and ponesimod; all oral formulations. B-cell-targeted therapies such as ocrelizumab, given intravenously, and since 2021 ofatumumab, applied subcutaneously, complement the spectrum of novel therapies. The glycoengineered antibody ublituximab is the next anti-CD20 therapy about to be approved. Within the next years, oral inhibitors of Bruton's tyrosine kinase, currently under investigation in several phase III trials, may be licensed for multiple sclerosis. Those developments currently offer an individualized multiple sclerosis therapy, targeting patient needs with substantial effects on relapses, disability progression, and implications for daily life. In this up-to-date review, we provide a holistic overview about novel developments of the therapeutic landscape and upcoming approaches for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| |
Collapse
|
5
|
Inchingolo AD, Malcangi G, Ceci S, Patano A, Corriero A, Vimercati L, Azzollini D, Marinelli G, Coloccia G, Piras F, Barile G, Settanni V, Mancini A, De Leonardis N, Garofoli G, Palmieri G, Isacco CG, Rapone B, Scardapane A, Curatoli L, Quaranta N, Ribezzi M, Massaro M, Jones M, Bordea IR, Tartaglia GM, Scarano A, Lorusso F, Macchia L, Larocca AMV, Aityan SK, Tafuri S, Stefanizzi P, Migliore G, Brienza N, Dipalma G, Favia G, Inchingolo F. Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. Int J Mol Sci 2022; 23:8485. [PMID: 35955621 PMCID: PMC9369331 DOI: 10.3390/ijms23158485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The recent COVID-19 pandemic produced a significant increase in cases and an emergency state was induced worldwide. The current knowledge about the COVID-19 disease concerning diagnoses, patient tracking, the treatment protocol, and vaccines provides a consistent contribution for the primary prevention of the viral infection and decreasing the severity of the SARS-CoV-2 disease. The aim of the present investigation was to produce a general overview about the current findings for the COVID-19 disease, SARS-CoV-2 interaction mechanisms with the host, therapies and vaccines' immunization findings. METHODS A literature overview was produced in order to evaluate the state-of-art in SARS-CoV-2 diagnoses, prognoses, therapies, and prevention. RESULTS Concerning to the interaction mechanisms with the host, the virus binds to target with its Spike proteins on its surface and uses it as an anchor. The Spike protein targets the ACE2 cell receptor and enters into the cells by using a special enzyme (TMPRSS2). Once the virion is quietly accommodated, it releases its RNA. Proteins and RNA are used in the Golgi apparatus to produce more viruses that are released. Concerning the therapies, different protocols have been developed in observance of the disease severity and comorbidity with a consistent reduction in the mortality rate. Currently, different vaccines are currently in phase IV but a remarkable difference in efficiency has been detected concerning the more recent SARS-CoV-2 variants. CONCLUSIONS Among the many questions in this pandemic state, the one that recurs most is knowing why some people become more seriously ill than others who instead contract the infection as if it was a trivial flu. More studies are necessary to investigate the efficiency of the treatment protocols and vaccines for the more recent detected SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Arnaldo Scardapane
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Luigi Curatoli
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Quaranta
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Mario Ribezzi
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Maria Massaro
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Megan Jones
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Angela Maria Vittoria Larocca
- Hygiene Complex Operating Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Place Giulio Cesare 11 BARI CAP, 70124 Bari, Italy;
| | | | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Pasquale Stefanizzi
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Giovanni Migliore
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Gianfranco Favia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| |
Collapse
|
6
|
Otani IM, Lehman HK, Jongco AM, Tsao LR, Azar AE, Tarrant TK, Engel E, Walter JE, Truong TQ, Khan DA, Ballow M, Cunningham-Rundles C, Lu H, Kwan M, Barmettler S. Practical guidance for the diagnosis and management of secondary hypogammaglobulinemia: A Work Group Report of the AAAAI Primary Immunodeficiency and Altered Immune Response Committees. J Allergy Clin Immunol 2022; 149:1525-1560. [PMID: 35176351 DOI: 10.1016/j.jaci.2022.01.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
Secondary hypogammaglobulinemia (SHG) is characterized by reduced immunoglobulin levels due to acquired causes of decreased antibody production or increased antibody loss. Clarification regarding whether the hypogammaglobulinemia is secondary or primary is important because this has implications for evaluation and management. Prior receipt of immunosuppressive medications and/or presence of conditions associated with SHG development, including protein loss syndromes, are histories that raise suspicion for SHG. In patients with these histories, a thorough investigation of potential etiologies of SHG reviewed in this report is needed to devise an effective treatment plan focused on removal of iatrogenic causes (eg, discontinuation of an offending drug) or treatment of the underlying condition (eg, management of nephrotic syndrome). When iatrogenic causes cannot be removed or underlying conditions cannot be reversed, therapeutic options are not clearly delineated but include heightened monitoring for clinical infections, supportive antimicrobials, and in some cases, immunoglobulin replacement therapy. This report serves to summarize the existing literature regarding immunosuppressive medications and populations (autoimmune, neurologic, hematologic/oncologic, pulmonary, posttransplant, protein-losing) associated with SHG and highlights key areas for future investigation.
Collapse
Affiliation(s)
- Iris M Otani
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF Medical Center, San Francisco, Calif.
| | - Heather K Lehman
- Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Artemio M Jongco
- Division of Allergy and Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| | - Lulu R Tsao
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF Medical Center, San Francisco, Calif
| | - Antoine E Azar
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore
| | - Teresa K Tarrant
- Division of Rheumatology and Immunology, Duke University, Durham, NC
| | - Elissa Engel
- Division of Hematology and Oncology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Jolan E Walter
- Division of Allergy and Immunology, Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Allergy and Immunology, Morsani College of Medicine, University of South Florida, Tampa; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston
| | - Tho Q Truong
- Divisions of Rheumatology, Allergy and Clinical Immunology, National Jewish Health, Denver
| | - David A Khan
- Division of Allergy and Immunology, University of Texas Southwestern Medical Center, Dallas
| | - Mark Ballow
- Division of Allergy and Immunology, Morsani College of Medicine, Johns Hopkins All Children's Hospital, St Petersburg
| | | | - Huifang Lu
- Department of General Internal Medicine, Section of Rheumatology and Clinical Immunology, The University of Texas MD Anderson Cancer Center, Houston
| | - Mildred Kwan
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill
| | - Sara Barmettler
- Allergy and Immunology, Massachusetts General Hospital, Boston.
| |
Collapse
|
7
|
Mirabella M, Annovazzi P, Brownlee W, Cohen JA, Kleinschnitz C, Wolf C. Treatment Challenges in Multiple Sclerosis – A Continued Role for Glatiramer Acetate? Front Neurol 2022; 13:844873. [PMID: 35493825 PMCID: PMC9051342 DOI: 10.3389/fneur.2022.844873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Earlier diagnosis, access to disease-modifying therapies (DMTs), and improved supportive care have favorably altered the disease course of multiple sclerosis (MS), leading to an improvement in long-term outcomes for people with MS (PwMS). This success has changed the medical characteristics of the population seen in MS clinics. Comorbidities and the accompanying polypharmacy, immune senescence, and the growing number of approved DMTs make selecting the optimal agent for an individual patient more challenging. Glatiramer acetate (GA), a moderately effective DMT, interacts only minimally with comorbidities, other medications, or immune senescence. We describe here several populations in which GA may represent a useful treatment option to overcome challenges due to advanced age or comorbidities (e.g., hepatic or renal disease, cancer). Further, we weigh GA's potential merits in other settings where PwMS and their neurologists must base treatment decisions on factors other than selecting the most effective DMT, e.g., family planning, conception and pregnancy, or the need for vaccination.
Collapse
Affiliation(s)
- Massimiliano Mirabella
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Centro di Ricerca Sclerosi Multipla (CERSM), Università Cattolica, Rome, Italy
- *Correspondence: Massimiliano Mirabella ; orcid.org/0000-0002-7783-114X
| | - Pietro Annovazzi
- MS Center, ASST Valle Olona, Gallarate Hospital, Gallarate, Italy
| | - Wallace Brownlee
- Queen Square MS Centre, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Jeffrey A. Cohen
- Department of Neurology, Mellen Center, Neurologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | | |
Collapse
|
8
|
Seroconversion after COVID-19 vaccination for multiple sclerosis patients on high efficacy disease modifying medications. Mult Scler Relat Disord 2022; 60:103719. [PMID: 35276450 PMCID: PMC8890787 DOI: 10.1016/j.msard.2022.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
The impaired ability to mount an effective immune response to vaccination leaves immunosuppressed patients at higher risk of severe COVID-19 infection. This retrospective study aimed to evaluate COVID-19 seroconversion and antibody titers for patients on immune modulating therapies compared to those not on disease modifying therapy (DMT). As expected, individuals on B-cell depletion therapies (BCDT) and those on sphingosine 1-phosphate (S1P) modulators had an impaired humoral response to mRNA vaccination. We observed variable seroconversion depending on the type of B-cell depleting medication, with a smaller percentage of seroconversion in patients on infused BCDT (iBCDT, ocrelizumab and rituximab) compared to ofatumumab. The humoral response to vaccination was not impaired for individuals on natalizumab or for untreated MS patients. These observations may influence DMT selection during the COVID-19 era.
Collapse
|
9
|
Smets I, Giovannoni G. Derisking CD20-therapies for long-term use. Mult Scler Relat Disord 2021; 57:103418. [PMID: 34902761 DOI: 10.1016/j.msard.2021.103418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/15/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
Anti-CD20 have quickly become the mainstay in the treatment of multiple sclerosis (MS) and other neuroinflammatory conditions. However, when they are used as a maintenance therapy the balance between risks and benefits changes. In this review, we suggested six steps to derisk anti-CD20. Firstly and secondly, adequate infectious screening followed by vaccinations before starting anti-CD20 are paramount. Third, family planning needs to be discussed upfront with every woman of childbearing age. Fourth, infusion reactions should be adequately managed to avoid treatment interruption. After repeated infusions, it becomes important to detect and prevent anti-CD20-related adverse events. Fifth, we recommended measuring immunoglobulin levels and reviewing vaccinations annually as well as counselling adequate fever management. For female patients, we emphasised the importance to engage with the local breast cancer screening programs. Sixth, to fundamentally derisk anti-CD20 therapies, we need evidence-based approaches to reduce dosing intervals and guide retreatment.
Collapse
Affiliation(s)
- Ide Smets
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom; Clinical Board Medicine (Neuroscience), Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London E1 1FR, United Kingdom
| | - Gavin Giovannoni
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom; Clinical Board Medicine (Neuroscience), Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London E1 1FR, United Kingdom.
| |
Collapse
|
10
|
Ali A, Dwyer D, Wu Q, Wang Q, Dowling CA, Fox DA, Khanna D, Poland GA, Mao-Draayer Y. Characterization of humoral response to COVID mRNA vaccines in multiple sclerosis patients on disease modifying therapies. Vaccine 2021; 39:6111-6116. [PMID: 34483021 PMCID: PMC8411370 DOI: 10.1016/j.vaccine.2021.08.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 01/15/2023]
Abstract
Little is known about COVID-19 mRNA vaccine humoral immune responses in patients with central nervous system autoimmune demyelinating diseases, multiple sclerosis (MS) and neuromyelitis optica (NMO), who are on B-cell depleting therapies (BCDT) and other disease modifying therapies (DMTs). We conducted a single center prospective study to identify the clinical and immunological features associated with vaccine-induced antibody response in 53 participants before and after COVID-19 mRNA vaccination. This is the first report on the anti-spike RBD and anti-nucleocapsid antibody response, along with pre- and post-vaccine absolute lymphocyte counts (ALC) and flow cytometry analysis of CD19 and CD20 lymphocytes in patients with MS and NMO. We tested the hypothesis that patients on BCDT may have impaired COVID-19 vaccine humoral responses. Among patients on BCDT, 36.4% demonstrated a positive antibody response to spike RBD, in comparison to 100% in all other groups such as healthy controls, untreated MS, and patients on non-B cell depleting DMTs (p < 0.0001). Immunological data revealed lower baseline (pre-vaccination) levels of IgM in patients on BCDT (p = 0.003). Low CD19 and CD20 counts and a shorter interval from the last B cell depleting therapy infusion to the first vaccine dose were associated with a negative spike RBD antibody response (non-seroconverter) in patients on BCDT. Age, body mass index (BMI) and total treatment duration did not differ between seroconverters and non-seroconverters.
Collapse
Affiliation(s)
- Ahya Ali
- Department of Neurology, University of Michigan Medical School, USA
| | - Deanna Dwyer
- Department of Neurology, University of Michigan Medical School, USA
| | - Qi Wu
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - Qin Wang
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - Catherine A Dowling
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, USA; Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, USA
| | - Dinesh Khanna
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, USA
| | - Gregory A Poland
- Mayo Vaccine Research Group, Department of Internal Medicine, Mayo Clinic and Foundation, USA
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, USA; Autoimmunity Center of Excellence, University of Michigan Medical School, USA; Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, USA.
| |
Collapse
|
11
|
T-cell responses to SARS-CoV-2 in multiple sclerosis patients treated with ocrelizumab healed from COVID-19 with absent or low anti-spike antibody titers. Mult Scler Relat Disord 2021; 55:103157. [PMID: 34418737 PMCID: PMC8291995 DOI: 10.1016/j.msard.2021.103157] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Disease modifying therapies for multiple sclerosis (MS) can impair the specific immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Specifically, it is recognized that ocrelizumab reduces or abrogates anti-SARS-CoV-2 antibody production after natural infection or vaccination, while very little is known about T-cell responses. METHODS We developed an interferon (IFN)-γ release assay (IGRA) to detect T-cell responses specific to SARS-CoV-2 after overnight stimulation of whole blood with peptide libraries covering the immunodominant sequence domains of the Spike glycoprotein (S) and the Nucleocapsid phosphoprotein (N). RESULTS Five patients with MS receiving ocrelizumab treatment for at least 1 year and recovered from SARS-CoV-2 infection were enrolled in the study. Despite the absence or the very low concentration of anti-S antibodies, a T-cell response was detectable in all the five MS patients. These results are in accordance with the marked reduction of peripheral B-lymphocyte absolute counts induced by ocrelizumab, that, conversely, did not affect peripheral blood T-lymphocyte subset absolute and relative counts and CD4/CD8 ratio. CONCLUSIONS The detection of specific T-cell responses to SARS-CoV-2 in patients receiving B-cell depleting therapies represents a useful tool to improve the diagnostic approach in SARS-CoV-2 infection and to accurately assess the immunological response after natural infection or vaccination.
Collapse
|