1
|
Sadeghdoust M, Das A, Kaushik DK. Fueling neurodegeneration: metabolic insights into microglia functions. J Neuroinflammation 2024; 21:300. [PMID: 39551788 PMCID: PMC11571669 DOI: 10.1186/s12974-024-03296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system, emerge in the brain during early embryonic development and persist throughout life. They play essential roles in brain homeostasis, and their dysfunction contributes to neuroinflammation and the progression of neurodegenerative diseases. Recent studies have uncovered an intricate relationship between microglia functions and metabolic processes, offering fresh perspectives on disease mechanisms and possible treatments. Despite these advancements, there are still significant gaps in our understanding of how metabolic dysregulation affects microglial phenotypes in these disorders. This review aims to address these gaps, laying the groundwork for future research on the topic. We specifically examine how metabolic shifts in microglia, such as the transition from oxidative phosphorylation and mitochondrial metabolism to heightened glycolysis during proinflammatory states, impact the disease progression in Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Additionally, we explore the role of iron, fatty and amino acid metabolism in microglial homeostasis and repair. Identifying both distinct and shared metabolic adaptations in microglia across neurodegenerative diseases could reveal common therapeutic targets and provide a deeper understanding of disease-specific mechanisms underlying multiple CNS disorders.
Collapse
Affiliation(s)
- Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada
| | - Aysika Das
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada
| | - Deepak Kumar Kaushik
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr. St. John's, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
2
|
Yammine A, Ghzaiel I, Pires V, Zarrouk A, Kharoubi O, Greige-Gerges H, Auezova L, Lizard G, Vejux A. Cytoprotective effects of α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol on 7-ketocholesterol - Induced oxiapoptophagy: Major roles of PI3-K / PDK-1 / Akt signaling pathway and glutathione peroxidase activity in cell rescue. Curr Res Toxicol 2024; 6:100153. [PMID: 38379847 PMCID: PMC10877125 DOI: 10.1016/j.crtox.2024.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
On murine N2a cells, 7-ketocholesterol induced an oxiapotophagic mode of cell death characterized by oxidative stress (reactive oxygen species overproduction on whole cells and at the mitochondrial level; lipid peroxidation), apoptosis induction (caspase-9, -3 and -7 cleavage, PARP degradation) and autophagy (increased ratio LC3-II / LC3-I). Oxidative stress was strongly attenuated by diphenyleneiodonium chloride which inhibits NAD(P)H oxidase. Mitochondrial and peroxisomal morphological and functional changes were also observed. Down regulation of PDK1 / Akt signaling pathways as well as of GSK3 / Mcl-1 and Nrf2 pathways were simultaneously observed in 7-ketocholesterol-induced oxiapoptophagy. These events were prevented by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by LY-294002, a PI3-K inhibitor, demonstrated an essential role of PI3-K in cell rescue. The rupture of oxidative stress in 7-ketocholesterol-induced oxiapoptophagy was also associated with important modifications of glutathione peroxidase, superoxide dismutase and catalase activities as well as of glutathione peroxidase-1, superoxide dismutase-1 and catalase level and expression. These events were also counteracted by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by mercaptosuccinic acid, a glutathione peroxidase inhibitor, showed an essential role of this enzyme in cell rescue. Altogether, our data support that the reactivation of PI3-K and glutathione peroxidase activities by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol are essential to prevent 7KC-induced oxiapoptophagy.
Collapse
Affiliation(s)
- Aline Yammine
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Vivien Pires
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Omar Kharoubi
- University Oran 1 ABB: Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, Oran, Algeria
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Lizette Auezova
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| |
Collapse
|
3
|
Hjazi A, Ahsan M, Alghamdi MI, Kareem AK, Al-Saidi DN, Qasim MT, Romero-Parra RM, Zabibah RS, Ramírez-Coronel AA, Mustafa YF, Hosseini-Fard SR, Karampoor S, Mirzaei R. Unraveling the impact of 27-hydroxycholesterol in autoimmune diseases: Exploring promising therapeutic approaches. Pathol Res Pract 2023; 248:154737. [PMID: 37542860 DOI: 10.1016/j.prp.2023.154737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The role of 27-hydroxycholesterol (27-OHC) in autoimmune diseases has become a subject of intense research in recent years. This oxysterol, derived from cholesterol, has been identified as a significant player in modulating immune responses and inflammation. Its involvement in autoimmune pathogenesis has drawn attention to its potential as a therapeutic target for managing autoimmune disorders effectively. 27-OHC, an oxysterol derived from cholesterol, has emerged as a key player in modulating immune responses and inflammatory processes. It exerts its effects through various mechanisms, including activation of nuclear receptors, interaction with immune cells, and modulation of neuroinflammation. Additionally, 27-OHC has been implicated in the dysregulation of lipid metabolism, neurotoxicity, and blood-brain barrier (BBB) disruption. Understanding the intricate interplay between 27-OHC and autoimmune diseases, particularly neurodegenerative disorders, holds promise for developing targeted therapeutic strategies. Additionally, emerging evidence suggests that 27-OHC may interact with specific receptors and transcription factors, thus influencing gene expression and cellular processes in autoimmune disorders. Understanding the intricate mechanisms by which 27-OHC influences immune dysregulation and tissue damage in autoimmune diseases is crucial for developing targeted therapeutic interventions. Further investigations into the molecular pathways and signaling networks involving 27-OHC are warranted to unravel its full potential as a therapeutic target in autoimmune diseases, thereby offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Maria Ahsan
- King Edward Medical University Lahore, Pakistan
| | - Mohammed I Alghamdi
- Department of Computer Science, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia
| | - A K Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Dahlia N Al-Saidi
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Research group in educational statistics, National University of Education, Azogues, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Poli G, Leoni V, Biasi F, Canzoneri F, Risso D, Menta R. Oxysterols: From redox bench to industry. Redox Biol 2022; 49:102220. [PMID: 34968886 PMCID: PMC8717233 DOI: 10.1016/j.redox.2021.102220] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
More and more attention is nowadays given to the possible translational application of a great number of biochemical and biological findings with the involved molecules. This is also the case of cholesterol oxidation products, redox molecules over the last years deeply investigated for their implication in human pathophysiology. Oxysterols of non-enzymatic origin, the excessive increase of which in biological fluids and tissues is of toxicological relevance for their marked pro-oxidant and pro-inflammatory properties, are increasingly applied in clinical biochemistry as molecular markers in the diagnosis and monitoring of several human and veterinary diseases. Conversely, oxysterols of enzymatic origin, the production of which is commonly under physiological regulation, could be considered and tested as promising pharmaceutical agents because of their antiviral, pro-osteogenic and antiadipogenic properties of some of them. Very recently, the quantification of oxysterols of non-enzymatic origin has been adopted in a systematic way to evaluate, monitor and improve the quality of cholesterol-based food ingredients, that are prone to auto-oxidation, as well as their industrial processing and the packaging and the shelf life of the finished food products. The growing translational value of oxysterols is here reviewed in its present and upcoming applications in various industrial fields.
Collapse
Affiliation(s)
- Giuseppe Poli
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043, Orbassano, Turin, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Desio, ASST Brianza, School of Medicine and Surgery, University of Milano Bicocca, 20126, Milan, Italy
| | - Fiorella Biasi
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043, Orbassano, Turin, Italy
| | | | - Davide Risso
- Soremartec Italia Srl, Ferrero Group, 12051, Alba, CN, Italy
| | - Roberto Menta
- Soremartec Italia Srl, Ferrero Group, 12051, Alba, CN, Italy
| |
Collapse
|