1
|
Albergoni M, Preziosa P, Meani A, Dallari C, Valsasina P, Rocca MA, Filippi M. Aerobic capacity moderates the association between cervical cord atrophy and clinical disability in mildly disabled multiple sclerosis patients. Mult Scler 2025; 31:558-567. [PMID: 39953754 PMCID: PMC12008468 DOI: 10.1177/13524585251318647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Spinal cord volume loss is associated with clinical disability in multiple sclerosis (MS). Aerobic capacity may mitigate the impact of central nervous system (CNS) damage accumulation, exerting beneficial effects on MS-related disability. OBJECTIVES We investigated whether aerobic capacity could moderate the association between spinal cord atrophy and clinical disability in MS. METHODS In this cross-sectional analysis, expanded disability status scale (EDSS), peak of oxygen consumption (VO2peak), brain volumetric measures, and the normalized mean upper cervical cord area (nMUCCA) were collected from 51 MS patients and 33 healthy controls (HCs). Low aerobic capacity was defined as having a VO2peak z-score less than -1.64 standard deviations. In MS patients, we explored whether the association between nMUCCA and EDSS is moderated by the level of aerobic capacity. RESULTS The relationship between nMUCCA and EDSS was moderated by aerobic capacity, with a significant nMUCCA × aerobic capacity interaction (β = -0.099, 95% bootstrapped confidence interval [CI] = [-0.172; -0.014], p = 0.012). Lower nMUCCA was significantly associated with higher EDSS score in MS patients with low aerobic capacity (β = -0.073, p < 0.001), but not in those with high aerobic capacity (β = 0.026, p = 0.417). CONCLUSIONS In MS patients with mild disability, higher aerobic capacity can potentially mitigate the negative impact of spinal cord damage on clinical disability.
Collapse
Affiliation(s)
- Matteo Albergoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Dallari
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Kreiter D, Postma AA, Hupperts R, Gerlach O. Hallmarks of spinal cord pathology in multiple sclerosis. J Neurol Sci 2024; 456:122846. [PMID: 38142540 DOI: 10.1016/j.jns.2023.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
A disparity exists between spinal cord and brain involvement in multiple sclerosis (MS), each independently contributing to disability. Underlying differences between brain and cord are not just anatomical in nature (volume, white/grey matter organization, vascularization), but also in barrier functions (differences in function and composition of the blood-spinal cord barrier compared to blood-brain barrier) and possibly in repair mechanisms. Also, immunological phenotypes seem to influence localization of inflammatory activity. Whereas the brain has gained a lot of attention in MS research, the spinal cord lags behind. Advanced imaging techniques and biomarkers are improving and providing us with tools to uncover the mechanisms of spinal cord pathology in MS. In the present review, we elaborate on the underlying anatomical and physiological factors driving differences between brain and cord involvement in MS and review current literature on pathophysiology of spinal cord involvement in MS and the observed differences to brain involvement.
Collapse
Affiliation(s)
- Daniel Kreiter
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Raymond Hupperts
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Oliver Gerlach
- Academic MS Center Zuyd, Department of Neurology, Zuyderland MC, Sittard-Geleen, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
3
|
Weeda MM, van Nederpelt DR, Twisk JWR, Brouwer I, Kuijer JPA, van Dam M, Hulst HE, Killestein J, Barkhof F, Vrenken H, Pouwels PJW. Multimodal MRI study on the relation between WM integrity and connected GM atrophy and its effect on disability in early multiple sclerosis. J Neurol 2024; 271:355-373. [PMID: 37716917 PMCID: PMC10769935 DOI: 10.1007/s00415-023-11937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by pathology in white matter (WM) and atrophy of grey matter (GM), but it remains unclear how these processes are related, or how they influence clinical progression. OBJECTIVE To study the spatial and temporal relationship between GM atrophy and damage in connected WM in relapsing-remitting (RR) MS in relation to clinical progression. METHODS Healthy control (HC) and early RRMS subjects visited our center twice with a 1-year interval for MRI and clinical examinations, including the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC) scores. RRMS subjects were categorized as MSFC decliners or non-decliners based on ΔMSFC over time. Ten deep (D)GM and 62 cortical (C) GM structures were segmented and probabilistic tractography was performed to identify the connected WM. WM integrity was determined per tract with, amongst others, fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI), and myelin water fraction (MWF). Linear mixed models (LMMs) were used to investigate GM and WM differences between HC and RRMS, and between MSFC decliners and non-decliners. LMM was also used to test associations between baseline WM z-scores and changes in connected GM z-scores, and between baseline GM z-scores and changes in connected WM z-scores, in HC/RRMS subjects and in MSFC decliners/non-decliners. RESULTS We included 13 HCs and 31 RRMS subjects with an average disease duration of 3.5 years and a median EDSS of 3.0. Fifteen RRMS subjects showed declining MSFC scores over time, and they showed higher atrophy rates and greater WM integrity loss compared to non-decliners. Lower baseline WM integrity was associated with increased CGM atrophy over time in RRMS, but not in HC subjects. This effect was only seen in MSFC decliners, especially when an extended WM z-score was used, which included FA, MD, NDI and MWF. Baseline GM measures were not significantly related to WM integrity changes over time in any of the groups. DISCUSSION Lower baseline WM integrity was related to more cortical atrophy in RRMS subjects that showed clinical progression over a 1-year follow-up, while baseline GM did not affect WM integrity changes over time. WM damage, therefore, seems to drive atrophy more than conversely.
Collapse
Affiliation(s)
- Merlin M Weeda
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
| | - D R van Nederpelt
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - J W R Twisk
- Epidemiology and Data Science, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - I Brouwer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - J P A Kuijer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - M van Dam
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - H E Hulst
- Health-, Medical-, and Neuropsychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - J Killestein
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - F Barkhof
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - H Vrenken
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - P J W Pouwels
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Lauerer M, McGinnis J, Bussas M, El Husseini M, Pongratz V, Engl C, Wuschek A, Berthele A, Riederer I, Kirschke JS, Zimmer C, Hemmer B, Mühlau M. Prognostic value of spinal cord lesion measures in early relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 95:37-43. [PMID: 37495267 PMCID: PMC10804039 DOI: 10.1136/jnnp-2023-331799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Spinal cord (SC) lesions have been associated with unfavourable clinical outcomes in multiple sclerosis (MS). However, the relation of whole SC lesion number (SCLN) and volume (SCLV) to the future occurrence and type of confirmed disability accumulation (CDA) remains largely unexplored. METHODS In this monocentric retrospective study, SC lesions were manually delineated. Inclusion criteria were: age between 18 and 60 years, relapsing-remitting MS, disease duration under 2 years and clinical follow-up of 5 years. The first CDA event after baseline, determined by a sustained increase in the Expanded Disability Status Scale over 6 months, was classified as either progression independent of relapse activity (PIRA) or relapse-associated worsening (RAW). SCLN and SCLV were compared between different (sub)groups to assess their prospective value. RESULTS 204 patients were included, 148 of which had at least one SC lesion and 59 experienced CDA. Patients without any SC lesions experienced significantly less CDA (OR 5.8, 95% CI 2.1 to 19.8). SCLN and SCLV were closely correlated (rs=0.91, p<0.001) and were both significantly associated with CDA on follow-up (p<0.001). Subgroup analyses confirmed this association for patients with PIRA on CDA (34 events, p<0.001 for both SC lesion measures) but not for RAW (25 events, p=0.077 and p=0.22). CONCLUSION Patients without any SC lesions are notably less likely to experience CDA. Both the number and volume of SC lesions on MRI are associated with future accumulation of disability largely independent of relapses.
Collapse
Affiliation(s)
- Markus Lauerer
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University, Munich, Germany
| | - Julian McGinnis
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- Institute for AI in Medicine, Technical University, Munich, Germany
| | - Matthias Bussas
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University, Munich, Germany
| | - Malek El Husseini
- Department of Neuroradiology, School of Medicine, Technical University, Munich, Germany
| | - Viola Pongratz
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University, Munich, Germany
| | - Christina Engl
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
| | - Alexander Wuschek
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
| | - Isabelle Riederer
- Department of Neuroradiology, School of Medicine, Technical University, Munich, Germany
| | - Jan S Kirschke
- Department of Neuroradiology, School of Medicine, Technical University, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mark Mühlau
- Department of Neurology, School of Medicine, Technical University, Munich, Germany
- TUM-Neuroimaging Center, School of Medicine, Technical University, Munich, Germany
| |
Collapse
|
5
|
Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. WIREs Mech Dis 2023; 15:e1583. [PMID: 35948371 PMCID: PMC9839517 DOI: 10.1002/wsbm.1583] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Axonal loss in multiple sclerosis (MS) is a key component of disease progression and permanent neurologic disability. MS is a heterogeneous demyelinating and neurodegenerative disease of the central nervous system (CNS) with varying presentation, disease courses, and prognosis. Immunomodulatory therapies reduce the frequency and severity of inflammatory demyelinating events that are a hallmark of MS, but there is minimal therapy to treat progressive disease and there is no cure. Data from patients with MS, post-mortem histological analysis, and animal models of demyelinating disease have elucidated patterns of MS pathogenesis and underlying mechanisms of neurodegeneration. MRI and molecular biomarkers have been proposed to identify predictors of neurodegeneration and risk factors for disease progression. Early signs of axonal dysfunction have come to light including impaired mitochondrial trafficking, structural axonal changes, and synaptic alterations. With sustained inflammation as well as impaired remyelination, axons succumb to degeneration contributing to CNS atrophy and worsening of disease. These studies highlight the role of chronic demyelination in the CNS in perpetuating axonal loss, and the difficulty in promoting remyelination and repair amidst persistent inflammatory insult. Regenerative and neuroprotective strategies are essential to overcome this barrier, with early intervention being critical to rescue axonal integrity and function. The clinical and basic research studies discussed in this review have set the stage for identifying key propagators of neurodegeneration in MS, leading the way for neuroprotective therapeutic development. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Gabrielle M. Mey
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| | - Kedar R. Mahajan
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
- Mellen Center for MS Treatment and ResearchNeurological Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Tara M. DeSilva
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|