1
|
Mohsen E, Haffez H, Ahmed S, Hamed S, El-Mahdy TS. Multiple Sclerosis: A Story of the Interaction Between Gut Microbiome and Components of the Immune System. Mol Neurobiol 2025; 62:7762-7775. [PMID: 39934561 PMCID: PMC12078361 DOI: 10.1007/s12035-025-04728-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Multiple sclerosis (MS) is defined as an inflammatory disorder that chronically affects the central nervous system of young people mostly and is distributed globally. It is associated with degeneration and demyelination of the myelin sheath around the nerves, resulting in multiple neurological disability symptoms ranging from mild to severe cases that end with paralysis sometimes. MS is one of the rising diseases globally that is unfortunately associated with reduced quality of life and adding national economic burdens. The definite MS mechanism is not clearly defined; however, all the previous researches confirm the role of the immune system as the master contributor in the pathogenesis. Innate and adaptive immune cells are activated peripherally then attracted toward the central nervous system (CNS) due to the breakdown of the blood-brain barrier. Recently, the gut-brain axis was shown to depend on gut metabolites that are produced by different microorganisms in the colon. The difference in microbiota composition between individuals is responsible for diversity in secreted metabolites that affect immune responses locally in the gut or systemically when reach blood circulation to the brain. It may enhance or suppress immune responses in the central nervous system (CNS) (repeated short forms); consequently, it may exacerbate or ameliorate MS symptoms. Recent data showed that some metabolites can be used as adjuvant therapy in MS and other inflammatory diseases. This review sheds light on the nature of MS and the possible interaction between gut microbiota and immune system regulation through the gut-brain axis, hence contributing to MS pathogenesis.
Collapse
Affiliation(s)
- Esraa Mohsen
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
| | - Hesham Haffez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research (HSBR), Helwan University, Cairo, 11795, Egypt
| | - Sandra Ahmed
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Selwan Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt.
| | - Taghrid S El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, PO Box 11795, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| |
Collapse
|
2
|
Szewczak L, Machcińska M, Kierasińska M, Zawadzka-Więch U, Maruszewska-Cheruiyot M, Majewski P, Karlińska A, Rola R, Donskow-Łysoniewska K. Expression of STAT- and T-cell-related genes in women with first-line treatment of relapsing-remitting multiple sclerosis. Scand J Immunol 2025; 101:e13424. [PMID: 39545481 DOI: 10.1111/sji.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Relapsing-remitting multiple sclerosis is associated with changes in Jak/STAT pathways in immune cells, but the influence of disease-modifying drugs on these pathways is poorly understood. The aim of this study was to evaluate the impact of first-line disease-modifying drugs used in treatment of RRMS on expression of the STAT pathway and T-cell-related genes in the blood and on serum concentrations of sgp130 and TGF-β1 in women, as well as on the level of phosphorylated STAT3 and STAT5 proteins in T cells of untreated patients and heathy controls. Expression of STAT1, STAT3, STAT5A, STAT5B, SOCS1, SOCS3, FOXP3, IKZF2, RORC and ICOS genes in the blood of untreated RRMS patients, in the blood of patients treated with interferon-β, glatiramer acetate, dimethyl fumarate or teriflunomide and in the blood of healthy controls was evaluated using droplet digital PCR. Serum concentrations of sgp130 and TGF-β1 were evaluated by ELISA. Phosphorylated STAT3 and STAT5 protein levels in T cells were evaluated by flow cytometry. STAT3 gene expression was significantly higher in untreated patients than in healthy control, but the level of phosphorylated STAT3 in T cells was significantly lower. Patients treated with interferon-β or dimethyl fumarate had significantly lower STAT3 gene expression. Patients treated with teriflunomide had higher STAT1 gene expression, than untreated patients. Patients treated with dimethyl fumarate also had significantly lower RORC gene expression than untreated patients. The study shows the impact of drugs used in first-line treatment of relapsing-remitting multiple sclerosis on expression of STAT and T-cell-related genes.
Collapse
Affiliation(s)
- Ludmiła Szewczak
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Maja Machcińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Magdalena Kierasińska
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Zawadzka-Więch
- Department of Animal Physiology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Paweł Majewski
- Department of Animal Physiology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Karlińska
- Department of Neurology, Military Institute of Aviation Medicine, Warsaw, Poland
| | - Rafał Rola
- Department of Neurology, Military Institute of Aviation Medicine, Warsaw, Poland
| | | |
Collapse
|
3
|
Mohammed EMA. Understanding Multiple Sclerosis Pathophysiology and Current Disease-Modifying Therapies: A Review of Unaddressed Aspects. FRONT BIOSCI-LANDMRK 2024; 29:386. [PMID: 39614433 DOI: 10.31083/j.fbl2911386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 12/01/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) with an unknown etiology and pathophysiology that is not completely understood. Although great strides have been made in developing disease-modifying therapies (DMTs) that have significantly improved the quality of life for MS patients, these treatments do not entirely prevent disease progression or relapse. Identifying the unaddressed pathophysiological aspects of MS and developing targeted therapies to fill in these gaps are essential in providing long-term relief for patients. Recent research has uncovered some aspects of MS that remain outside the scope of available DMTs, and as such, yield only limited benefits. Despite most MS pathophysiology being targeted by DMTs, many patients still experience disease progression or relapse, indicating that a more detailed understanding is necessary. Thus, this literature review seeks to explore the known aspects of MS pathophysiology, identify the gaps in present DMTs, and explain why current treatments cannot entirely arrest MS progression.
Collapse
Affiliation(s)
- Eiman M A Mohammed
- Kuwait Cancer Control Centre, Department of Medical Laboratory, Molecular Genetics Laboratory, Ministry of Health, 13001 Shuwaikh, Kuwait
| |
Collapse
|
4
|
Ding J, Yan X, Zhao C, Zhao D, Jia Y, Ren K, Wang Y, Lu J, Sun T, Zhao S, Li H, Guo J. The ratio of circulating CD56 dim NK cells to follicular T helper cells as a promising predictor for disease activity of relapsing-remitting multiple sclerosis. Heliyon 2024; 10:e31533. [PMID: 38803865 PMCID: PMC11128518 DOI: 10.1016/j.heliyon.2024.e31533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system primarily mediated by CD4+ T helper cells. This study investigated the dynamic changes of natural killer (NK) cells and follicular T helper (Tfh) cells and their associations in relapsing-remitting MS patients. The findings revealed inverse relationships between NK cells and CD4+ T cells or Tfh cells. Specifically, CD56dim NK cells, not CD56bright NK cells, were negatively correlated with CD4+ T cells and Tfh cells. However, no significant correlations were found between NK cells and sNfL levels or EDSS scores. The ratio of CD56dim NK cells to circulating Tfh (cTfh) cells demonstrated superior discriminatory ability in distinguishing relapsing MS patients from healthy controls (HCs) and remitting patients, as determined by receiver operating characteristic (ROC) analysis. Following treatment with immunosuppressants or disease-modifying therapies (DMTs), a significant increase in the CD56dim NK/cTfh ratio was observed. These findings suggest that the CD56dim NK/cTfh ratio holds promise as a prognostic indicator for clinical relapse and treatment response in MS.
Collapse
Affiliation(s)
- Jiaqi Ding
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xu Yan
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Cong Zhao
- Department of Neurology, Air Force Medical Center of PLA, Beijing, 100142, China
| | - Daidi Zhao
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Jia
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Kaixi Ren
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yao Wang
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jiarui Lu
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Tangna Sun
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Sijia Zhao
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Hongzeng Li
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| |
Collapse
|
5
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Ren X, Liu X, Hua M, Dai Y, Ren X, Sui C, Li X, Jiang Z, Tian M, Yang B. Discovery a series of novel inhibitors of human dihydroorotate dehydrogenase: Biological activity evaluation and molecular docking. Chem Biol Drug Des 2024; 103:e14388. [PMID: 37926553 DOI: 10.1111/cbdd.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Human dihydroorotate dehydrogenase (hDHODH) is a key enzyme that catalyzes the de novo synthesis of pyrimidine. In recent years, various studies have shown that inhibiting this enzyme can treat autoimmune diseases such as rheumatoid arthritis (RA) and cancer. This study designed and synthesized a series of novel thiazolidone hDHODH inhibitors. Through biological activity evaluation, Compound 14 was found to have high inhibitory activity, with an IC50 value reaching nanomolar level. Preliminary structure-activity relationship studies found that the carboxyl group in R1 and the naphthalene in R2 are key factors in improving activity. Through molecular docking, the binding mode between inhibitors and proteins was elucidated. This study provides an important reference for further optimizing hDHODH inhibitors.
Collapse
Affiliation(s)
- Xiaoli Ren
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xiaoyong Liu
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Miao Hua
- Chongqing Experimental School, Chongqing, China
| | - Yan Dai
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xiaoping Ren
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Chaoya Sui
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xiangbi Li
- Chongqing Auleon Biologicals Co., Ltd, Chongqing, China
| | - Zhiyong Jiang
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Min Tian
- College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, China
| | - Bing Yang
- College of Environment and Quality Inspection, Chongqing Chemical Industry Vocational College, Chongqing, China
| |
Collapse
|