1
|
Shilova EV, Koltakov IA, Kannykin SV, Artyukhov VG. Inclusion of Magnetite Nanoparticles Stabilized with Cetyltrimethylammonium Bromide in Soy Lecithin-Based Liposomes. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
2
|
Dawn R, Zzaman M, Faizal F, Kiran C, Kumari A, Shahid R, Panatarani C, Joni IM, Verma VK, Sahoo SK, Amemiya K, Singh VR. Origin of Magnetization in Silica-coated Fe 3O 4 Nanoparticles Revealed by Soft X-ray Magnetic Circular Dichroism. BRAZILIAN JOURNAL OF PHYSICS 2022; 52:99. [PMCID: PMC9014780 DOI: 10.1007/s13538-022-01102-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/31/2022] [Indexed: 05/24/2023]
Abstract
Abstract
Magnetite (Fe3O4) nanoparticles (NPs) and SiO2-coated Fe3O4 nanoparticles have successfully been synthesized using co-precipitation and modified Stöber methods, respectively. The samples were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), vibrating sample magnetometer (VSM) techniques, X-ray absorption spectroscopy (XAS), and X-ray magnetic circular dichroism (XMCD). XRD and FTIR data confirmed the structural configuration of a single-phase Fe3O4 and the successful formation of SiO2-coated Fe3O4 NPs. XRD also confirmed that we have succeeded to synthesize nano-meter size of Fe3O4 NPs. HRTEM images showed the increasing thickness of SiO2-coated Fe3O4 with the addition of the Tetraethyl Orthosilicate (TEOS). Room temperature VSM analysis showed the magnetic behaviour of Fe3O4 and its variations that occurred after SiO2 coating. The magnetic behaviour is further authenticated by XAS spectra analysis which cleared about the existence of SiO2 shells that have transformed the crystal as well as the local structures of the magnetite NPs. We have performed XMCD measurements, which is a powerful element-specific technique to find out the origin of magnetization in SiO2-coated Fe3O4 NPs, that verified a decrease in magnetization with increasing thickness of the SiO2 coating. Graphical Abstract Magnetite (Fe3O4) nanoparticles (NPs) and SiO2-coated Fe3O4 nanoparticles have successfully been synthesized using co-precipitation and modified Stöber methods, respectively. The samples were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), vibrating sample magnetometer (VSM) techniques, X-ray absorption spectroscopy (XAS), and X-ray magnetic circular dichroism (XMCD). XRD and FTIR data confirmed the structural configuration of a single-phase Fe3O4 and the successful formation of SiO2-coated Fe3O4 NPs. XRD also confirmed that we have succeeded to synthesize nano-meter size of Fe3O4 NPs. HRTEM images showed the increasing thickness of SiO2-coated Fe3O4 with the addition of the Tetraethyl Orthosilicate (TEOS). Room temperature VSM analysis showed the magnetic behaviour of Fe3O4 and its variations that occurred after SiO2 coating. The magnetic behaviour is further authenticated by XAS spectra analysis which cleared about the existence of SiO2 shells that have transformed the crystal as well as the local structures of the magnetite NPs. We have performed XMCD measurements, which is a powerful element-specific technique to find out the origin of magnetization in SiO2-coated Fe3O4 NPs, that verified a decrease in magnetization with increasing thickness of the SiO2 coating. ![]()
Collapse
Affiliation(s)
- R. Dawn
- Department of Physics, Central University of South Bihar, Gaya-824236, India
| | - M. Zzaman
- Department of Physics, Central University of South Bihar, Gaya-824236, India
- Department of Physics, Jamia Millia Islamia (Central University), New Delhi, 110025 India
| | - F. Faizal
- Department of Physics, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, West Java, Bandung, 45363 Indonesia
- Functional Nano Powder University Centre of Excellence (FiNder U CoE), Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, Km 21, West Java, Bandung, 45363 Indonesia
| | - C. Kiran
- Department of Animal Sciences, Central University of Kashmir, Ganderbal, 191201 India
| | - A. Kumari
- Department of Physics, Central University of South Bihar, Gaya-824236, India
| | - R. Shahid
- Department of Physics, Jamia Millia Islamia (Central University), New Delhi, 110025 India
| | - C. Panatarani
- Department of Physics, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, West Java, Bandung, 45363 Indonesia
- Functional Nano Powder University Centre of Excellence (FiNder U CoE), Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, Km 21, West Java, Bandung, 45363 Indonesia
| | - I. M. Joni
- Department of Physics, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km 21, West Java, Bandung, 45363 Indonesia
- Functional Nano Powder University Centre of Excellence (FiNder U CoE), Universitas Padjadjaran, Jl. Raya Bandung-Sumedang, Km 21, West Java, Bandung, 45363 Indonesia
| | - V. K. Verma
- Department of Physics, Madanapalle Institute of Technology & Science, Madanapalle, 517325 India
| | - S. K. Sahoo
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela, 769008 India
| | - K. Amemiya
- Photon Factory, IMSS, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 Japan
| | - V. R. Singh
- Department of Physics, Central University of South Bihar, Gaya-824236, India
| |
Collapse
|
6
|
Pacifico J, van Leeuwen YM, Spuch-Calvar M, Sánchez-Iglesias A, Rodríguez-Lorenzo L, Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM. Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects. NANOTECHNOLOGY 2009; 20:095708. [PMID: 19417504 DOI: 10.1088/0957-4484/20/9/095708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work we compare the standard imaging of various types of nanoparticles deposited on surfaces by atomic force microscopy (AFM) with a complementary analysis of the same samples by either electrostatic force microscopy (EFM) or magnetic force microscopy (MFM). Experiments were carried out on gold nanoparticles (decahedrons and stars) and two different iron oxide systems: goethite (alpha-FeOOH) and hematite (alpha-Fe(2)O(3)). Regardless of the particular geometry, the EFM signal appears to be stronger on edges or tips of pure gold nanoparticles. Both EFM and MFM experiments were also carried out on iron oxide particles. Apart from the structural analysis, we analyzed the influence of a shell layer deposited on the gold and iron oxide particles, the shell being amorphous SiO(2). Although the silica layer was found to have an insulating effect around the particles, in all cases EFM/MFM measurements could still be performed by the proper choice of the scan lift height (with an eventual slight increase of the sample bias, where applicable).
Collapse
Affiliation(s)
- J Pacifico
- Departamento de Química Física, and Unidad Asociada CSIC, Universidade de Vigo, Vigo, Spain.
| | | | | | | | | | | | | | | |
Collapse
|