1
|
Guo JS, Lu G, Song FL, Meng MY, Song YH, Ma HN, Xie XR, Zhu YJ, He S, Li XB. Odor Fingerprinting of Chitosan and Source Identification of Commercial Chitosan: HS-GC-IMS, Multivariate Statistical Analysis, and Tracing Path Study. Polymers (Basel) 2024; 16:1858. [PMID: 39000713 PMCID: PMC11243783 DOI: 10.3390/polym16131858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Chitosan samples were prepared from the shells of marine animals (crab and shrimp) and the cell walls of fungi (agaricus bisporus and aspergillus niger). Fourier-transform infrared spectroscopy (FT-IR) was used to detect their molecular structures, while headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was employed to analyze their odor composition. A total of 220 volatile organic compounds (VOCs), including esters, ketones, aldehydes, etc., were identified as the odor fingerprinting components of chitosan for the first time. A principal component analysis (PCA) revealed that chitosan could be effectively identified and classified based on its characteristic VOCs. The sum of the first three principal components explained 87% of the total variance in original information. An orthogonal partial least squares discrimination analysis (OPLS-DA) model was established for tracing and source identification purposes, demonstrating excellent performance with fitting indices R2X = 0.866, R2Y = 0.996, Q2 = 0.989 for independent variable fitting and model prediction accuracy, respectively. By utilizing OPLS-DA modeling along with a heatmap-based tracing path study, it was found that 29 VOCs significantly contributed to marine chitosan at a significance level of VIP > 1.00 (p < 0.05), whereas another set of 20 VOCs specifically associated with fungi chitosan exhibited notable contributions to its odor profile. These findings present a novel method for identifying commercial chitosan sources, which can be applied to ensure biological safety in practical applications.
Collapse
Affiliation(s)
- Jin-Shuang Guo
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China; (M.-Y.M.); (Y.-H.S.); (H.-N.M.); (X.-R.X.); (Y.-J.Z.); (S.H.); (X.-B.L.)
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fu-Lai Song
- Qingdao Health Ocean Biopharmaceutical Co., Ltd., Qingdao 266001, China;
| | - Ming-Yu Meng
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China; (M.-Y.M.); (Y.-H.S.); (H.-N.M.); (X.-R.X.); (Y.-J.Z.); (S.H.); (X.-B.L.)
| | - Yu-Hao Song
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China; (M.-Y.M.); (Y.-H.S.); (H.-N.M.); (X.-R.X.); (Y.-J.Z.); (S.H.); (X.-B.L.)
| | - Hao-Nan Ma
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China; (M.-Y.M.); (Y.-H.S.); (H.-N.M.); (X.-R.X.); (Y.-J.Z.); (S.H.); (X.-B.L.)
| | - Xin-Rui Xie
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China; (M.-Y.M.); (Y.-H.S.); (H.-N.M.); (X.-R.X.); (Y.-J.Z.); (S.H.); (X.-B.L.)
| | - Yi-Jia Zhu
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China; (M.-Y.M.); (Y.-H.S.); (H.-N.M.); (X.-R.X.); (Y.-J.Z.); (S.H.); (X.-B.L.)
| | - Song He
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China; (M.-Y.M.); (Y.-H.S.); (H.-N.M.); (X.-R.X.); (Y.-J.Z.); (S.H.); (X.-B.L.)
| | - Xue-Bo Li
- Characteristic Laboratory of Forensic Science in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan 250014, China; (M.-Y.M.); (Y.-H.S.); (H.-N.M.); (X.-R.X.); (Y.-J.Z.); (S.H.); (X.-B.L.)
| |
Collapse
|
2
|
Chitosan Schiff bases/AgNPs: synthesis, characterization, antibiofilm and preliminary anti-schistosomal activity studies. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03993-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
3
|
Eco-friendly synthesis of phthalate angico gum towards nanoparticles engineering using Quality by Design (QbD) approach. Int J Biol Macromol 2021; 190:801-809. [PMID: 34508723 DOI: 10.1016/j.ijbiomac.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
We developed a new hydrophobic polymer based on angico gum (AG), and we produced new nanoparticles to expand the applications of natural polysaccharides in nanomedicine. Phthalate angico gum (PAG) was characterized by 1H NMR, FTIR, elementary analysis, solubility, XRD, and TG. PAG was a hydrophobic and semi-crystalline material, a relevant characteristic for drug delivery system applications. As a proof of concept, nevirapine (NVP) was selected for nanoparticles development. Plackett-Burman's experimental design was used to understand the influence of several factors in nanoparticles production. PAG proved to be a versatile material for producing nanoparticles with different characteristics. Optimized nanoparticles were produced using desirability parameters. NVP-loaded PAG nanoparticles formulation showed 202.1 nm of particle size, 0.23 of PDI, -17.1 of zeta potential, 69.8 of encapsulation efficiency, and promoted modified drug release for 8 h. Here we show that PAG presents as a promising biopolymer for drug delivery systems.
Collapse
|
4
|
|
5
|
Preparation and characterization of dispersions based on chitosan and poly(styrene sulfonate). Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4099-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Auricularia auricular polysaccharide-low molecular weight chitosan polyelectrolyte complex nanoparticles: Preparation and characterization. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.10.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
7
|
Magalhães GA, Moura Neto E, Sombra VG, Richter AR, Abreu CMWS, Feitosa JPA, Paula HCB, Goycoolea FM, de Paula RCM. Chitosan/Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. Int J Biol Macromol 2016; 88:244-53. [PMID: 27041650 DOI: 10.1016/j.ijbiomac.2016.03.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 11/29/2022]
Abstract
Nanoparticles are produced by means of polyelectrolyte complexation (PEC) of oppositely charged polycationic chitosan (CH) with polyanionic polysaccharide extracted from Sterculia striata exudates (rhamnogalacturonoglycan (RG)-type polysaccharide). The nanoparticles formed with low-molar-mass CH are larger than those formed with high-molar-mass CH. This behavior is in contrast with that previously observed for other systems and may be attributed to different mechanisms related to the association of CH with RG of higher persistence length chain than that of CH. Nanoparticles harnessed with a charge ratio (n(+)/n(-)) of <1 are smaller than particles with an excess of polycations. Particles with hydrodynamic sizes smaller than 100nm are achieved using a polyelectrolyte concentration of 10(-4)gmL(-1) and charge ratio (n(+)/n(-)) of <1. The CH/RG nanoparticles are associated with chloroquine (CQ) with an efficiency of 28% and release it for up to ∼60% within ∼10h, whereas in the latter, only ∼40% of the CQ was released after 24h. The main factor that influenced drug release rate is the nanoparticle charge ratio.
Collapse
Affiliation(s)
- Guilherme A Magalhães
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Erico Moura Neto
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Venícios G Sombra
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Ana R Richter
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Clara M W S Abreu
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Judith P A Feitosa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760
| | - Haroldo C B Paula
- Departamento de Química Analitica e Fisico-Química, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021,CEP 60455-760
| | | | - Regina C M de Paula
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil, CP 6021, CEP 60455-760.
| |
Collapse
|
8
|
Bassyouni F, ElHalwany N, Abdel Rehim M, Neyfeh M. Advances and new technologies applied in controlled drug delivery system. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1338-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Abreu FO, Oliveira EF, Paula HC, de Paula RC. Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym 2012; 89:1277-82. [DOI: 10.1016/j.carbpol.2012.04.048] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 12/21/2022]
|
10
|
Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 2010; 8:1305-22. [PMID: 20479980 PMCID: PMC2866488 DOI: 10.3390/md8041305] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 11/16/2022] Open
Abstract
Chitosan has been the subject of interest for its use as a polymeric drug carrier material in dosage form design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. However, one drawback of using this natural polysaccharide in modified release dosage forms for oral administration is its fast dissolution rate in the stomach. Since chitosan is positively charged at low pH values (below its pK(a) value), it spontaneously associates with negatively charged polyions in solution to form polyelectrolyte complexes. These chitosan based polyelectrolyte complexes exhibit favourable physicochemical properties with preservation of chitosan's biocompatible characteristics. These complexes are therefore good candidate excipient materials for the design of different types of dosage forms. It is the aim of this review to describe complexation of chitosan with selected natural and synthetic polyanions and to indicate some of the factors that influence the formation and stability of these polyelectrolyte complexes. Furthermore, recent investigations into the use of these complexes as excipients in drug delivery systems such as nano- and microparticles, beads, fibers, sponges and matrix type tablets are briefly described.
Collapse
Affiliation(s)
- Josias H Hamman
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|