1
|
Klarić E, Tarle A, Vukelja J, Soče M, Grego T, Janković B. Remineralization effects of Er,Cr:YSGG and/or bioactive glass on human enamel after radiotherapy-an in vitro study. Lasers Med Sci 2023; 38:65. [PMID: 36746823 DOI: 10.1007/s10103-023-03726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2023] [Indexed: 02/08/2023]
Abstract
The aim was to evaluate the effects of Er,Cr:YSGG and/or bioactive glass 45S5 (BG) on the chemical and physical properties of enamel after radiotherapy. Third molar crowns were cut in half (buccal-lingually), and the mid part of the labial/oral surface was subjected to different protocols. All samples were treated with standard 70 Gy. After radiotherapy, enamel was treated with either Er,Cr:YSGG (2780 nm; pulse 60 μs) and BG or only BG, and control samples were kept in deionized water. Vickers microhardness, scanning electron microscopy (SEM), and characteristic X-ray spectroscopy (EDS) were performed before, after radiotherapy, and after treatment. Analysis of variance (ANOVA) was used. A significant drop in enamel microhardness was observed after radiotherapy (p < 0.001). After Er,Cr:YSGG and BG or BG alone, there was a significant increase in microhardness (p < 0.001), which was on average significantly higher compared to the initial measurements for Er,Cr:YSGG with BG (p < 0.001), but not observed in BG alone (p = 0.331). After radiotherapy, SEM showed increased surface roughness with eroded prisms. Er,Cr:YSGG and BG or BG alone both showed disorderly packed glass particles on the enamel surface. Radiotherapy noticeably reduced the concentrations of calcium and phosphorus. Er,Cr:YSGG and BG treatment increased the concentrations of calcium, sodium, phosphorus, and silicate. BG treatment alone increased the concetration of calcium and phosphorus. Directly induced radiotherapy led to potential damage of enamel, but afterwards treatment with Er,Cr:YSGG laser and BG resulted in a higher increase of enamel microhardness compared to BG alone, reflecting in a possible better remineralization effect.
Collapse
Affiliation(s)
- Eva Klarić
- Department of Endodontics and Restorative Dental Medicine, University of Zagreb School of Dental Medicine, Zagreb, Croatia.
| | - Andro Tarle
- Department of Otorhinolaryngology, Head and Neck Surgery, Clinical Hospital Centre "Sestre Milosrdnice", Zagreb, Croatia
| | - Josipa Vukelja
- University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - Majana Soče
- Department of Oncology, Radiotherapy Unit, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Timor Grego
- Department of Oncology, Radiotherapy Unit, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Bernard Janković
- Department of Endodontics and Restorative Dental Medicine, University of Zagreb School of Dental Medicine, Zagreb, Croatia
| |
Collapse
|
2
|
Montazerian M, Baino F, Fiume E, Migneco C, Alaghmandfard A, Sedighi O, DeCeanne AV, Wilkinson CJ, Mauro JC. Glass-ceramics in dentistry: Fundamentals, technologies, experimental techniques, applications, and open issues. PROGRESS IN MATERIALS SCIENCE 2023; 132:101023. [DOI: 10.1016/j.pmatsci.2022.101023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Pajares-Chamorro N, Lensmire JM, Hammer ND, Hardy JW, Chatzistavrou X. Unraveling the mechanisms of inhibition of silver-doped bioactive glass-ceramic particles. J Biomed Mater Res A 2022; 111:975-994. [PMID: 36583930 DOI: 10.1002/jbm.a.37482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Infections are a major concern in orthopedics. Antibacterial agents such as silver ions are of great interest as broad-spectrum biocides and have been incorporated into bioactive glass-ceramic particles to control the release of ions within a therapeutic concentration and provide tissue regenerative properties. In this work, the antibacterial capabilities of silver-doped bioactive glass (Ag-BG) microparticles were explored to reveal the unedited mechanisms of inhibition against methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial properties were not limited to the delivery of silver ions but rather a combination of antibacterial degradation by-products. For example, nano-sized debris punctured holes in bacteria membranes, osmotic effects, and reactive oxygen species causing oxidative stress and almost 40% of the inhibition. Upon successive Ag-BG treatments, MRSA underwent phenotypic and genomic mutations which were not only insufficient to develop resistance but instead, the clones became more sensitive as the treatment was re-delivered. Additionally, the unprecedented restorative functionality of Ag-BG allowed the effective use of antibiotics that MRSA resists. The synergy mechanism was mainly identified for combinations targeting cell-wall activity and their action was proven in biofilm-like and virulent conditions. Unraveling these mechanisms may offer new insights into how to tailor healthcare materials to prevent or debilitate infections and join the fight against antibiotic resistance in clinical cases.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Josh M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jonathan W Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.,Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Yang B, Wang S, Wang G, Yang X. Mechanical properties and wear behaviors analysis of fluorapatite glass-ceramics based on stereolithography 3D printing. J Mech Behav Biomed Mater 2021; 124:104859. [PMID: 34607301 DOI: 10.1016/j.jmbbm.2021.104859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Stereolithography (SL) 3D printing of ceramic materials is a promising forming technology to prepare denture with complex shape in the dental field. But the SL formed parts often have inferior mechanical properties than traditional forming method, and the debinding process is time assuming, limiting the clinical application of the technology. In this paper, a novel fluorapatite (FAp) glass-ceramics samples were fabricated through SL 3D printing based on self-made glass-ceramic powders. The effect of laser power and scanning speed on mechanical properties and tribological properties of FAp glass-ceramics were investigated. Phase compositions and microstructure of specimens were characterized by X-ray diffractometer and scanning electron microscope. The microhardness, flexural strength, elastic modulus and tribological performances of the SL samples were tested and compared with that of traditional dry pressing formed samples. The results showed that with the appropriate laser parameters and a relatively short debinding time, the SL formed glass-ceramics had microhardness, flexural strength, and elastic modulus of 772.05 Hv, 205.97 MPa, and 97.06 GPa, respectively, which exceeded that of traditional formed samples. The results reveal that it is possible to efficiently obtain FAp glass-ceramics with excellent mechanical and tribological performance by SL 3D printing process with appropriate parameters.
Collapse
Affiliation(s)
- Bingbing Yang
- School of Mechanical Engineering, University of Jinan, Jinan, 250022, China
| | - Shouren Wang
- School of Mechanical Engineering, University of Jinan, Jinan, 250022, China.
| | - Gaoqi Wang
- School of Mechanical Engineering, University of Jinan, Jinan, 250022, China.
| | - Xuefeng Yang
- School of Mechanical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
5
|
Pajares-Chamorro N, Wagley Y, Maduka CV, Youngstrom DW, Yeger A, Badylak SF, Hammer ND, Hankenson K, Chatzistavrou X. Silver-doped bioactive glass particles for in vivo bone tissue regeneration and enhanced methicillin-resistant Staphylococcus aureus (MRSA) inhibition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111693. [PMID: 33545854 PMCID: PMC8168684 DOI: 10.1016/j.msec.2020.111693] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022]
Abstract
Infection is a significant risk factor for failed healing of bone and other tissues. We have developed a sol-gel (solution-gelation) derived bioactive glass doped with silver ions (Ag-BG), tailored to provide non-cytotoxic antibacterial activity while significantly enhancing osteoblast-lineage cell growth in vitro and bone regeneration in vivo. Our objective was to engineer a biomaterial that combats bacterial infection while maintaining the capability to promote bone growth. We observed that Ag-BG inhibits bacterial growth and potentiates the efficacy of conventional antibiotic treatment. Ag-BG microparticles enhance cell proliferation and osteogenic differentiation in human bone marrow stromal cells (hBMSC) in vitro. Moreover, in vivo tests using a calvarial defect model in mice demonstrated that Ag-BG microparticles induce bone regeneration. This novel system with dual biological and advanced antibacterial properties is a promising therapeutic for combating resistant bacteria while triggering new bone formation.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Chima V Maduka
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA; Institute for Quantitative Health Sciences and Technology, Michigan State University, East Lansing, MI 48824, USA; Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Alyssa Yeger
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Kurt Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Materials Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
6
|
Marsh AC, Mellott NP, Pajares-Chamorro N, Crimp M, Wren A, Hammer ND, Chatzistavrou X. Fabrication and multiscale characterization of 3D silver containing bioactive glass-ceramic scaffolds. Bioact Mater 2019; 4:215-223. [PMID: 31236524 PMCID: PMC6580235 DOI: 10.1016/j.bioactmat.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/02/2023] Open
Abstract
In this work, we fabricated and characterized bioactive 3D glass-ceramic scaffolds with inherent antibacterial properties. The sol-gel (solution-gelation) technique and the sacrificial template method were applied for the fabrication of 3D highly porous scaffolds in the 58.6SiO2 - 24.9CaO - 7.2P2O5 - 4.2Al2O3 - 1.5Na2O -1.5K2O - 2.1Ag2O system (Ag-BG). This system is known for its advanced bioactive and antibacterial properties. The fabrication of 3D scaffolds has potential applications that impact tissue engineering. The study of the developed scaffolds from macro-characteristics to nano-, revealed a strong correlation between the macroscale properties such as antibacterial action, bioactivity with the microstructural characteristics such as elemental analysis, crystallinity. Elemental homogeneity, morphological, and microstructural characteristics of the scaffolds were studied by scanning electron microscopy associated with energy dispersive spectroscopy (SEM-EDS), transmittance electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy methods. The compressive strength of the 3D scaffolds was measured within the range of values for glass-ceramic scaffolds with similar compositions, porosity, and pore size. The capability of the scaffolds to form an apatite-like phase was tested by immersing the scaffolds in simulated body fluid (SBF) and the antibacterial response against methicillin-resistant Staphylococcus aureus (MRSA) was studied. The formation of an apatite phase was observed after two weeks of immersion in SBF and the anti-MRSA effect occurs after both direct and indirect exposure.
Collapse
Affiliation(s)
- Adam C. Marsh
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Nathan P. Mellott
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Natalia Pajares-Chamorro
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Martin Crimp
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Anthony Wren
- Alfred University, Kazuo Inamori School of Engineering, Alfred, NY, USA
| | - Neal D. Hammer
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Pajares-Chamorro N, Shook J, Hammer ND, Chatzistavrou X. Resurrection of antibiotics that methicillin-resistant Staphylococcus aureus resists by silver-doped bioactive glass-ceramic microparticles. Acta Biomater 2019; 96:537-546. [PMID: 31302297 DOI: 10.1016/j.actbio.2019.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022]
Abstract
This work describes a novel strategy to combat methicillin-resistant Staphylococcus aureus (MRSA) via the reactivation of inert antibiotics. This strategy exploits a multifunctional system consisting of bioactive glass-ceramic microparticles with antibacterial properties combined with various antibiotics to kill MRSA. Specifically, sol-gel derived silver-doped bioactive glass-ceramic microparticles (Ag-BG) combined with antibiotics that MRSA resists such as oxacillin or fosfomycin, significantly decreased the viability of MRSA. Ag-BG also potentiated the activity of vancomycin on static bacteria, which are typically resistant to this antibiotic. Notably, the synergistic activity is restricted to cell-envelope acting antibiotics as Ag-BG supplementation did not increase the efficacy of gentamicin. Bacteria viability assays and electron microscopy images demonstrate that Ag-BG synergizes to restore antibacterial activity to antibiotics that MRSA resists. The low cytotoxicity previously studied against oral bacteria, together with the known regenerative properties presented in previous studies, and the unique antibacterial properties observed in this work when they are combined with antibiotics, make this multifunctional system a promising approach for healing infected tissue. STATEMENT OF SIGNIFICANCE: This study addresses a very significant issue in the field of antibiotic resistance presenting an innovative way to clear MRSA, by utilizing bioactive glass-ceramic microparticles in combination with antibiotics. Multifunctional glass-ceramic microparticles doped with silver ions (Ag-BG) have been previously observed to exhibit bioactive and antibacterial properties. In this study Ag-BG microparticles were observed to synergize with antibiotics restoring their sensitivity against MRSA. This research work presents a novel approach to resurrect ineffective antibiotics and render them effective against MRSA. Cytotoxicity to eukaryotic cells is not anticipated, as it has been previously observed that these microparticles can trigger hard and soft dental tissue regeneration, when they are utilized in certain concentrations. This study opens a new avenue in the treatment of multidrug resistance bacteria.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - John Shook
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
8
|
Beketova A, Varitis S, Kontonasaki E, Zorba T, Papadopoulou L, Kantiranis N, Theodorou GS, Paraskevopoulos KM, Koidis P. Evaluation of the micro-mechanical and bioactive properties of bioactive glass-dental porcelain composite. J Mech Behav Biomed Mater 2018; 86:77-83. [PMID: 29957447 DOI: 10.1016/j.jmbbm.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate microhardness and elastic modulus of a novel sol-gel derived dental ceramic - 58S bioactive glass composite (BP67: Bioactive Glass:33.3%, Dental Ceramic:66.7%) BP671 material by micro-indentation and to investigate its microstructure and bioactivity. The research hypotheses were that the values of microhardness (1) and elastic modulus (2) of the novel bioceramic composite and the commercial dental ceramic will be of the same order. The experimental sol-gel derived ceramics showed similar microstructural characteristics to a commercial feldspathic porcelain, and presence of additional calcium phosphate phases, which contributed its bioactivity. The formation of an apatite-like layer on the materials' surface observed by Fourier Transform Infrared (FTIR)2 spectroscopy, X-ray Diffraction (XRD)3 and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS)4 techniques after 12 days of maintenance in Conventional Simulated Body Fluid (cSBF)5 solution. The BP67 exhibited values of microhardness and modulus of elasticity which were not statistically significant different compared to dental ceramic, indicating the adequate mechanical integrity of the material. The results of this study suggest that the novel bioactive composite could be potentially applied in prosthetic dentistry, while its thermal and optical properties should be investigated in future studies.
Collapse
Affiliation(s)
- Anastasia Beketova
- School of Health Sciences, Dentistry Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Savvas Varitis
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleana Kontonasaki
- School of Health Sciences, Dentistry Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Triantafillia Zorba
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Lambrini Papadopoulou
- Department of Geology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nikolaos Kantiranis
- Department of Geology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Georgios S Theodorou
- Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Petros Koidis
- School of Health Sciences, Dentistry Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
9
|
Montazerian M, Zanotto ED. Bioactive and inert dental glass-ceramics. J Biomed Mater Res A 2016; 105:619-639. [PMID: 27701809 DOI: 10.1002/jbm.a.35923] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/14/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017.
Collapse
Affiliation(s)
- Maziar Montazerian
- Department of Materials Engineering (DEMa), Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar), São Carlos, SP, 13.565-905, Brazil
| | - Edgar Dutra Zanotto
- Department of Materials Engineering (DEMa), Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar), São Carlos, SP, 13.565-905, Brazil
| |
Collapse
|
10
|
Abbasi Z, Bahrololoum ME, Bagheri R, Shariat MH. Characterization of the bioactive and mechanical behavior of dental ceramic/sol–gel derived bioactive glass mixtures. J Mech Behav Biomed Mater 2016; 54:115-22. [DOI: 10.1016/j.jmbbm.2015.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
|
11
|
Montazerian M, Dutra Zanotto E. History and trends of bioactive glass-ceramics. J Biomed Mater Res A 2016; 104:1231-49. [DOI: 10.1002/jbm.a.35639] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/27/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Maziar Montazerian
- Department of Materials Engineering (DEMa); Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar); São Carlos SP 13.565-905 Brazil
| | - Edgar Dutra Zanotto
- Department of Materials Engineering (DEMa); Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar); São Carlos SP 13.565-905 Brazil
| |
Collapse
|
12
|
Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0491-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Chatzistavrou X, Fenno JC, Faulk D, Badylak S, Kasuga T, Boccaccini AR, Papagerakis P. Fabrication and characterization of bioactive and antibacterial composites for dental applications. Acta Biomater 2014; 10:3723-32. [PMID: 24802300 DOI: 10.1016/j.actbio.2014.04.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 04/21/2014] [Accepted: 04/28/2014] [Indexed: 02/05/2023]
Abstract
There is an increasing clinical need to design novel dental materials that combine regenerative and antibacterial properties. In this work the characterization of a recently developed sol-gel-derived bioactive glass ceramic containing silver ions (Ag-BG) is presented. The microstructural characteristics, ion release profile, zeta potential value and changes in weight loss and pH value as a function of the immersion time of Ag-BG in Tris buffer are evaluated. Ag-BG is also incorporated into natural extracellular matrix (ECM) hydrogel to further enhance its regenerative properties. Then, the micro and macro architectures of these new composites (ECM/Ag-BG) are characterized. In addition, the antibacterial properties of these new composites are tested against Escherichia coli and Enterococcus faecalis, a bacterium commonly implicated in the pathogenesis of dental pulp infections. Cell-material interaction is also monitored in a primary culture of dental pulp cells. Our study highlights the benefits of the successful incorporation of Ag in the bioactive glass, resulting in a stable antibacterial material with long-lasting bactericidal activity. Furthermore, this work presents for the first time the fabrication of new Ag-doped composite materials, with inductive pulp-cell proliferation and antibacterial properties (ECM/Ag-BG). This advanced composite made of Ag-BG incorporated into natural ECM possesses improved properties that may facilitate potential applications in tooth regeneration approaches.
Collapse
Affiliation(s)
- Xanthippi Chatzistavrou
- Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - J Christopher Fenno
- Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Denver Faulk
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Toshihiro Kasuga
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Petros Papagerakis
- Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Moszner N, Hirt T. New polymer-chemical developments in clinical dental polymer materials: Enamel-dentin adhesives and restorative composites. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26260] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Chatzistavrou X, Kontonasaki E, Bakopoulou A, Theocharidou A, Sivropoulou A, Paraskevopoulos KM, Koidis P, Boccaccini AR, Kasuga T. Development of new sol-gel derived Ag-doped biomaterials for dental applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1557/opl.2012.743] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTThe aim of this work was to develop a new Ag-doped bioactive material with antibacterial behavior, optimizing the properties of the new fabricated composite material in the system SiO2 58.6 -P2O5 7.2 -Al2O3 4.2 -CaO 24.9 -Na2O 2.1 -K2O 3 (wt%). Two systems with different concentrations in Ag2O (Ba with 2.1 and Bb with 4.2 wt%) were prepared by the sol-gel method and compared to the respective silver-free control composite (CONTROL). The microstructural characteristics of the developed compositions were characterized by different techniques as UV/VIS spectroscopy, X-ray diffraction analysis (XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS). The antibacterial properties of the Ag-doped glass-ceramics were tested against the bacterial colony Staphylococcus aureus (S. aureus) which is very characteristic oral bacteria and the material-cell interaction was monitored in a primary culture of Human Gingival Fibroblasts (HGFs). Our study shows the successful incorporation of the silver ions in the ceramic structure and the preparation of new Ag-doped composite materials with cell-proliferation-inductive, as well as antibacterial properties indicating their potential application dental tissue restoration strategies.
Collapse
|
16
|
Li J, Cai S, Xu G, Li X, Zhang W, Zhang Z. In vitro biocompatibility study of calcium phosphate glass ceramic scaffolds with different trace element doping. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2011.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Abstract
The aim of this work was to improve a newly developed family of glass-ceramic composite materials by incorporating silver ions in the ceramic structure, thus developing new Ag-doped materials with the ability of showing antibacterial activity for dental applications. Two different sol-gel methodologies were applied for the fabrication of colorless, homogenous and chemically durable materials which can slowly release silver ion for relatively long periods. Both methods led to the successful development of Ag-doped glass-ceramics with silver ions incorporated in the structure that can slowly release in buffer solution, during a period of 45 days. The potential, application of these materials involve the development of bioactive surfaces on dental substrates which can seal the marginal gap creating a bacterial free environment finally supporting the success of dental restorations.
Collapse
|