1
|
Bai Y, Li W, Tie Y, Kou Y, Wang YX, Hu W. A Stretchable Polymer Conductor Through the Mutual Plasticization Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303245. [PMID: 37318149 DOI: 10.1002/adma.202303245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Indexed: 06/16/2023]
Abstract
Intrinsically stretchable conductors play key roles in the dynamic interfacing of electronic devices with soft human tissues. However, it is difficult to simultaneously achieve high electrical conductivity and mechanical stretchability. Here, highly stretchable and conductive thin film electrodes are prepared by combining PEDOT:PSS and a mutually plasticized polymer dopant. Notably, harsh acid treatment for conductivity enhancement is avoided, and good solvent tolerance and high optical transparency are realized, all of which are essential to device fabrication. A transparent electrochromic display is further developed that can bear stretching up to 80% strain, demonstrating its promising application in next-generation optoelectronics.
Collapse
Affiliation(s)
- Yihong Bai
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Weizhen Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Yuan Tie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Yan Kou
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Yi-Xuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
2
|
Soccio M, Dominici F, Quattrosoldi S, Luzi F, Munari A, Torre L, Lotti N, Puglia D. PBS-Based Green Copolymer as an Efficient Compatibilizer in Thermoplastic Inedible Wheat Flour/Poly(butylene succinate) Blends. Biomacromolecules 2020; 21:3254-3269. [PMID: 32602702 PMCID: PMC8009480 DOI: 10.1021/acs.biomac.0c00701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Considering
the current context of research aiming at proposing
new bioplastics with low costs and properties similar to fossil-based
commodities currently on the market, in the present work, a hybrid
blend containing a prevalent amount of cheap inedible cereal flour
(70 wt %) and poly(butylene succinate) (PBS) (30 wt %) has been prepared
by a simple, eco-friendly, and low-cost processing methodology. In
order to improve the interfacial tension and enhance the adhesion
between the different phases at the solid state, with consequent improvement
in microstructure uniformity and in material mechanical and adhesive
performance, the PBS fraction in the blend was replaced with variable
amounts (0–25 wt %) of PBS-based green copolymer, which exerted
the function of a compatibilizer. The copolymer is characterized by
an ad hoc chemical structure, containing six-carbon aliphatic rings,
also present in the flour starch structure. The two synthetic polyesters
obtained through two-stage melt polycondensation have been deeply
characterized from the molecular, thermal, and mechanical points of
view. Copolymerization deeply impacts the polymer final properties,
the crystallizing ability, and stiffness of the PBS homopolymer being
reduced. Also, the prepared ternary blends were deeply investigated
in terms of microstructure, thermal, and mechanical properties. Lastly,
both pure blend components and ternary blends were subjected to disintegration
experiments under composting conditions. The results obtained proved
how effective was the compatibilizer action of the copolymer, as evidenced
by the investigation conducted on morphology and mechanical properties.
Specifically, the mixtures with 15 and 20 wt % Co appeared to be characterized
by the best mechanical performance, showing a progressive increase
of deformation while preserving good values of elastic modulus and
stress. The disintegration rate in compost was found to be higher
for the lower amount of copolymer in the ternary blend. However, after
90 days of incubation, the blend richest in copolymer content lost
62% of weight.
Collapse
Affiliation(s)
- Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Franco Dominici
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Silvia Quattrosoldi
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Francesca Luzi
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Andrea Munari
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Luigi Torre
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| |
Collapse
|
3
|
da Silva FT, de Oliveira JP, Fonseca LM, Bruni GP, da Rosa Zavareze E, Dias ARG. Physically cross-linked aerogels based on germinated and non-germinated wheat starch and PEO for application as water absorbers for food packaging. Int J Biol Macromol 2020; 155:6-13. [DOI: 10.1016/j.ijbiomac.2020.03.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022]
|
4
|
Chemelli A, Gomernik F, Thaler F, Huber A, Hirn U, Bauer W, Spirk S. Cationic starches in paper-based applications-A review on analytical methods. Carbohydr Polym 2020; 235:115964. [PMID: 32122498 DOI: 10.1016/j.carbpol.2020.115964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/18/2023]
Abstract
This review focuses on cationic starches with a low degree of substitution (<0.06) which are mainly used for production of paper-based products. After a brief introduction on starch in general, cationization pathways and importance of cationic starches in paper production, this review emphasizes on the analytical challenges from different perspectives. These include the different length scales of starches when in solution: the macromolecular level, their assembly into nm aggregates and finally hydrocolloids with hundreds of nanometers of diameter. We give an overview on the current state of the art on the analysis of such challenging samples and aim at providing a guideline for obtaining and presenting reliable analytical data.
Collapse
Affiliation(s)
- Angela Chemelli
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria.
| | - Florian Gomernik
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010, Graz, Austria
| | - Ferula Thaler
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Anton Huber
- Institute of Chemistry, University of Graz, Heinrichstrasse 24, 8010, Graz, Austria
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010, Graz, Austria
| | - Wolfgang Bauer
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010, Graz, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010, Graz, Austria.
| |
Collapse
|
5
|
Preparation and Composition Optimization of PEO:MC Polymer Blend Films to Enhance Electrical Conductivity. Polymers (Basel) 2019; 11:polym11050853. [PMID: 31083367 PMCID: PMC6572458 DOI: 10.3390/polym11050853] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
The polymer blend technique was used to improve amorphous phases of a semicrystalline polymer. A series of solid polymer blend films based on polyethylene oxide (PEO) and methylcellulose (MC) were prepared using the solution cast technique. X-ray diffraction (XRD), Polarized optical microscope (POM), Fourier transform infrared (FTIR) and electrical impedance spectroscopy (EIS) were used to characterize the prepared blend films. The XRD and POM studies indicated that all polymer blend films are semicrystalline in nature, and the lowest degree of crystallinity was obtained for PEO:MC polymer blend film with a weight ratio of 60:40. The FTIR spectroscopy was used to identify the chemical structure of samples and examine the interactions between chains of the two polymers. The interaction between PEO and MC is evidenced from the shift of infrared absorption bands. The DC conductivity of the films at different temperatures revealed that the highest conductivity 6.55 × 10-9 S/cm at ambient temperature was achieved for the blend sample with the lowest degree of crystallinity and reach to 26.67 × 10-6 S/cm at 373 K. The conductivity relaxation process and the charge transport through the hopping mechanism have been explained by electric modulus analysis. The imaginary part of electrical modulus M″ shows an asymmetrical peak, suggesting a temperature-dependent non-Debye relaxation for the PEO:MC polymer blend system.
Collapse
|
6
|
Serôdio R, Schickert SL, Costa-Pinto AR, Dias JR, Granja PL, Yang F, Oliveira AL. Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:969-981. [DOI: 10.1016/j.msec.2019.01.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/07/2018] [Accepted: 01/12/2019] [Indexed: 01/23/2023]
|
7
|
Salehi S, Boddohi S. Design and optimization of kollicoat ® IR based mucoadhesive buccal film for co-delivery of rizatriptan benzoate and propranolol hydrochloride. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:230-244. [DOI: 10.1016/j.msec.2018.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/11/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
|
8
|
Functionalization of poly(epichlorohydrin) using sodium hydrogen squarate: cytotoxicity and compatibility in blends with chitosan. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2290-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Bruni GP, de Oliveira JP, El Halal SLM, Flores WH, Gundel A, de Miranda MZ, Dias ARG, da Rosa Zavareze E. Phosphorylated and Cross-Linked Wheat Starches in the Presence of Polyethylene Oxide and Their Application in Biocomposite Films. STARCH-STARKE 2018. [DOI: 10.1002/star.201700192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Graziella Pinheiro Bruni
- Departamento de Ciência e Tecnologia Agrindustrial, Universidade Federal de Pelotas; Pelotas 96010-900 RS Brazil
| | - Jean Paulo de Oliveira
- Departamento de Ciência e Tecnologia Agrindustrial, Universidade Federal de Pelotas; Pelotas 96010-900 RS Brazil
| | - Shanise Lisie Mello El Halal
- Departamento de Ciência e Tecnologia Agrindustrial, Universidade Federal de Pelotas; Pelotas 96010-900 RS Brazil
| | | | - Andre Gundel
- Universidade Federal do Pampa; Bagé 96413-172 RS Brazil
| | - Martha Zavariz de Miranda
- Empresa Brasileira de Pesquisa Agropecuária − Centro Nacional de Pesquisa de Trigo; Passo Fundo 99050-970 RS Brazil
| | - Alvaro Renato Guerra Dias
- Departamento de Ciência e Tecnologia Agrindustrial, Universidade Federal de Pelotas; Pelotas 96010-900 RS Brazil
| | - Elessandra da Rosa Zavareze
- Departamento de Ciência e Tecnologia Agrindustrial, Universidade Federal de Pelotas; Pelotas 96010-900 RS Brazil
| |
Collapse
|
10
|
Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol 2018; 107:371-382. [DOI: 10.1016/j.ijbiomac.2017.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 11/18/2022]
|
11
|
Jiang M, Hong Y, Gu Z, Cheng L, Li Z, Li C. Effects of acid hydrolysis intensity on the properties of starch/xanthan mixtures. Int J Biol Macromol 2018; 106:320-329. [PMID: 28803975 DOI: 10.1016/j.ijbiomac.2017.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 08/03/2017] [Indexed: 11/28/2022]
Abstract
The effects of acid hydrolysis intensity on the physicochemical properties of starch/xanthan gum (XG) system were studied. Waxy corn starch (WCS) was subjected to different concentrations of hydrochloric acid, and crystallization and relative molecular weight analysis were performed. The results revealed that the starch granules became smaller during acid hydrolysis. X-ray diffraction pattern analysis showed that the crystal structure did not change with acid hydrolysis. Evaluation of the properties and digestibility of different acid-thinned starch/XG systems indicated that the viscosity of acid-thinned starch/XG decreased with increased acid hydrolysis intensity. Rheological property measurements indicated that the compound systems were a pseudo-plastic fluid, which is a typical weak gel structure. Finally, we show that the WCS1.0M/XG has the highest stability of the tested mixtures. We conclude that adjusting the conditions of acid hydrolysis improves the stability and food quality-enhancing properties of starch.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
12
|
|
13
|
Samanta P, V T, Singh S, Srivastava R, Nandan B, Liu CL, Chen HL. Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. SOFT MATTER 2016; 12:5110-5120. [PMID: 27184694 DOI: 10.1039/c6sm00648e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have studied the confined crystallization behaviour of poly(ethylene oxide) (PEO) in the electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO, where PS was present as the major component. The size and shape of PEO domains in the nanofibers were considerably different from those in the cast films, presumably because of the nano-dimensions of the nanofibers and the extensional forces experienced by the polymer solution during electrospinning. The phase-separated morphology in turn influenced the crystallization behaviour of PEO in the blend nanofibers. At a PEO weight fraction of ≥0.3, crystallization occurred through a heterogeneous nucleation mechanism similar to that in cast blend films. However, as the PEO weight fraction in the blend nanofibers was reduced from 0.3 to 0.2, an abrupt transformation of the nucleation mechanism from the heterogeneous to predominantly homogenous type was observed. The change in the nucleation mechanism implied a drastic reduction of the spatial continuity of PEO domains in the nanofibers, which was not encountered in the cast film. The melting temperature and crystallinity of the PEO crystallites developed in the nanofibers were also significantly lower than those in the corresponding cast films. The phenomena observed were reconciled by the morphological observation, which revealed that the phase separation under the radial constraint of the nanofibers led to the formation of small-sized fibrillar PEO domains with limited spatial connectivity. The thermal treatment of the PS/PEO blend nanofibers above the glass transition temperature of PS induced an even stronger confinement effect on PEO crystallization.
Collapse
Affiliation(s)
- Pratick Samanta
- Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang Y, Gao P, Zhao L, Chen Y. Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1546-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Gomes RF, de Azevedo ACN, Pereira AG, Muniz EC, Fajardo AR, Rodrigues FH. Fast dye removal from water by starch-based nanocomposites. J Colloid Interface Sci 2015; 454:200-9. [DOI: 10.1016/j.jcis.2015.05.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
16
|
Patel G, Sureshkumar MB, Patel P. Spectroscopic Investigation and Characterizations of PAM/PEO Blends Films. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/soft.2015.42002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Mahalingam S, Ren G, Edirisinghe M. Rheology and pressurised gyration of starch and starch-loaded poly(ethylene oxide). Carbohydr Polym 2014; 114:279-287. [DOI: 10.1016/j.carbpol.2014.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 07/04/2014] [Accepted: 08/04/2014] [Indexed: 12/28/2022]
|
18
|
Mohanraj S, Murugan D, Rengarajan A, Rajiv S. Anticancer activity of starch/poly[N-(2-hydroxypropyl)methacrylamide]: biomaterial film to treat skin cancer. Int J Biol Macromol 2014; 70:116-23. [PMID: 24984026 DOI: 10.1016/j.ijbiomac.2014.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/01/2014] [Accepted: 06/14/2014] [Indexed: 11/18/2022]
Abstract
In the present work, films of pHPMA, pHPMAS hybrid, pHPMA-CPT and pHPMAS-CPT hybrid were prepared by solvent casting method and characterized by FT-IR, FT-Raman, XRD and DSC, respectively. The biocompatibility of the prepared pHPMA film and pHPMAS hybrid film were assessed using VERO cell lines and the percentage cell viability was found to be 97.4 and 98.3% for 7.8 μg/ml of the film extracts after 72 h of incubation. The cancer cell viability of the pHPMA-CPT film and pHPMAS-CPT film using MCF7 cell lines at pH 5.5 and 7.4 were found to be 4.9 and 8.6% and 7.7 and 12.3%, respectively. In vitro release of camptothecin from pHPMA-CPT and pHPMAS-CPT films in phosphate-buffered saline solution at pH 5.5 and 7.4 were monitored and analyzed using UV-vis spectrophotometer at λmax of 360 nm.
Collapse
Affiliation(s)
- Subashree Mohanraj
- Department of Chemistry, Anna University, Chennai, Tamil Nadu 600 025, India
| | | | - Aburva Rengarajan
- Department of Chemistry, Anna University, Chennai, Tamil Nadu 600 025, India
| | - Sheeja Rajiv
- Department of Chemistry, Anna University, Chennai, Tamil Nadu 600 025, India.
| |
Collapse
|
19
|
Li J, Luo X, Lin X, Zhou Y. Comparative study on the blends of PBS/thermoplastic starch prepared from waxy and normal corn starches. STARCH-STARKE 2013. [DOI: 10.1002/star.201200260] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Yu F, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P. Plasticized-starch/poly(ethylene oxide) blends prepared by extrusion. Carbohydr Polym 2013; 91:253-61. [DOI: 10.1016/j.carbpol.2012.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/16/2022]
|
21
|
Boateng JS, Pawar HV, Tetteh J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm 2012; 441:181-91. [PMID: 23228898 DOI: 10.1016/j.ijpharm.2012.11.045] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
Polyethylene oxide (Polyox) and carrageenan based solvent cast films have been formulated as dressings for drug delivery to wounds. Films plasticised with glycerol were loaded with streptomycin (30%, w/w) and diclofenac (10%, w/w) for enhanced healing effects in chronic wounds. Blank and drug loaded films were characterised by texture analysis (for mechanical and mucoadhesive properties), scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and Fourier transform infrared spectroscopy. In addition, swelling, in vitro drug release and antibacterial studies were conducted to further characterise the films. Both blank and drug loaded films showed a smooth, homogeneous surface morphology, excellent transparency, high elasticity and acceptable tensile (mechanical) properties. The drug loaded films showed a high capacity to absorb simulated wound fluid and significant mucoadhesion force which is expected to allow effective adherence to and protection of the wound. The films showed controlled release of both streptomycin and diclofenac for 72 h. These drug loaded films produced higher zones of inhibition against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli compared to the individual drugs zones of inhibition. Incorporation of streptomycin can prevent and treat chronic wound infections whereas diclofenac can target the inflammatory phase of wound healing to relieve pain and swelling.
Collapse
Affiliation(s)
- Joshua S Boateng
- Department of Pharmaceutical, Chemical & Environmental Sciences, School of Science, University of Greenwich at Medway, Central Avenue, Chatham Maritime, ME4 4TB, Kent, UK.
| | | | | |
Collapse
|
22
|
Pawar HV, Tetteh J, Boateng JS. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B Biointerfaces 2012; 102:102-10. [PMID: 23006557 DOI: 10.1016/j.colsurfb.2012.08.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
Streptomycin (STP) and diclofenac (DLF) loaded film dressings were prepared by blending Polyox(®) (POL) with four hydrophilic polymers [hydroxypropylmethylcellulose (HPMC), carrageenan (CAR), sodium alginate (SA) or chitosan (CS)] using glycerol (GLY) as plasticiser. The films were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, texture analysis (tensile and swelling characteristics) and in vitro dissolution profiles using Franz diffusion cell. SEM showed homogeneous morphology for both blank (BLK) and drug loaded (DL) films. Films prepared by blending of POL with the other polymers showed a reduction in the crystallisation of POL in descending order of SA>CS>HPMC>CAR respectively. DSC and XRD showed no crystalline peaks of STP and DLF suggesting molecular dispersion of both drugs as well as possible drug interaction with negatively charged sulphate ions present in CAR. The DL films did not show any IR bands of both drugs, confirming the DSC and XRD results. POL-CAR-BLK films showed higher tensile strength (12.32±1.40 MPa) than the POL-CAR-DL films (9.52±1.12 MPa). DL films plasticised with 25%w/w GLY revealed soft and tough (tensile strength 1.02±0.28 MPa, % elongation 1031.33±16.23) formulations. The swelling capacities of POL-CAR-BLK and POL-CAR-DL films were (733.17±25.78%) and (646.39±40.39%), increasing to (1072.71±80.30%) and (1051±86.68%) for POL-CAR-BLK-25% GLY and POL-CAR-DL-25% GLY respectively. POL-CAR-DL films showed significantly (n=3, p<0.0318) lower cumulative release of STP and DLF (52.11±1.34, 55.26±2.25) compared to POL-CAR-DL-25% GLY films (60.07±1.56, 63.39±1.92) respectively.
Collapse
Affiliation(s)
- H V Pawar
- Department of Pharmaceutical, Chemical and Environmental Sciences, School of Science, University of Greenwich at Medway, Central Avenue, Chatham Maritime, ME4 4TB, Kent, UK
| | | | | |
Collapse
|
23
|
Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog Polym Sci 2011. [DOI: 10.1016/j.progpolymsci.2011.05.003] [Citation(s) in RCA: 532] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|