1
|
Erdem U, Dogan D, Bozer BM, Turkoz MB, Yıldırım G, Metin AU. Fabrication of mechanically advanced polydopamine decorated hydroxyapatite/polyvinyl alcohol bio-composite for biomedical applications: In-vitro physicochemical and biological evaluation. J Mech Behav Biomed Mater 2022; 136:105517. [PMID: 36270152 DOI: 10.1016/j.jmbbm.2022.105517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
In this study, polydopamine (PDA) coated hydroxyapatite (HA) reinforced polyvinyl alcohol (PVA) films were produced to be used in biomedical applications such as bone tissue regeneration. pDA is coated not only to prevent the agglomeration of HA when encountering interstitial fluids but also to strongly bind the PVA for the interaction between materials so that the mechanical performance becomes more stabilized. pDA was coated on the hydroxyapatite surface using a radical polymerization technique, and the reinforced PVA were produced with pDA-coated HA (pDA-HA/PVA) nanoparticles. Fundamental characteristic properties of pDA-HA/PVA nanocomposite films were examined by morphological/chemical (SEM-EDS), microstructural (XRD, Ft-IR, and Raman), thermodynamic (TGA and TM), mechanical performance (Vickers microhardness) and biological activity analysis (MTT, genotoxicity and antimicrobial efficacy investigations). Physicochemical analysis showed that all the samples studied exhibited homogeneous mineral distributions through the main structures. According to TGA, TMA and hardness tests, the new composite structure possessed higher mechanical properties than neat PVA. Further, pDA-HA/PVA nanocomposites exhibited high antibacterial capacities against Acinetobacter Baumannii (A.Baumannii), Staphylococcus aureus (S. aureus), and Streptococcus mutans (S.mutans). Moreover, the new nanocomposites were noted to present good biocompatibility for fibroblast (L929) cells and to support remarkably MCS cells. All in all, this comprehensive work shows that the thermo-mechanically improved pDA-HA/PVA films will increase the application fields of PVA in biomedical fields especially tooth-bone treatments for coating, filling, or occlusion purposes.
Collapse
Affiliation(s)
- Umit Erdem
- Kirikkale University, Scientific and Tech. Research Center, Kirikkale, Turkey, 71450.
| | - Deniz Dogan
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| | - Busra M Bozer
- Hitit University, Scientific Technical App. and Research Center, Corum, Turkey, 19030
| | - Mustafa B Turkoz
- Karabuk University, Faculty of Engineering, Electric and Electronics Engineering, Karabuk, Turkey, 78050
| | - Gurcan Yıldırım
- Abant Izzet Baysal University, Faculty of Engineering, Mechanical Engineering, Bolu, Turkey, 14280
| | - Aysegul U Metin
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| |
Collapse
|
2
|
Aglan HA, Fouad-Elhady EA, Hassan RE, Sabry GM, Ahmed HH. Nanoplatforms for Promoting Osteogenesis in Ovariectomy-Induced
Osteoporosis in the Experimental Model. CURRENT NANOMEDICINE 2022; 12:44-62. [DOI: 10.2174/2468187312666220217104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 01/05/2025]
Abstract
Background:
Osteoporosis is a debilitating bone ailment characterized by the obvious loss of bone mass and bone microarchitecture impairment.
Objective:
This study aimed to illuminate the in vivo usefulness of nanotechnology as a treatment for osteoporosis via analyzing the effectiveness of nano-hydroxyapatite (nHa), nano-hydroxy- apatite/chitosan (nHa/C), and nano-hydroxyapatite/silver (nHa/S) in mitigation of osteoporosis in ovariectomized rats.
Method:
The characterization of the nHa, nHa/C, and nHa/S was carried out using TEM, SEM, FTIR, and Zeta potential measurements. This in vivo study included 48 adult female rats that were randomized into six groups (8 rats/group): (1) Sham-operated control, (2) osteoporotic, (3) nHa, (4) nHa/C, (5) nHa/S, and (6) Fosamax®. Serum osterix level was quantified using ELISA. Femur bone morphogenetic protein 2 and SMAD1 mRNA levels were evaluated by qPCR. The femur bones were scanned by DEXA for measurement of bone mineral density and bone mineral content. In ad-dition, a histopathological examination of femur bones was performed.
Results:
The present approach denoted that the treatment with nHa, nHa/C, or nHa/S yields a signif-icant rise in serum level of osterix and mRNA levels of bone morphogenetic protein 2 and SMAD1 as well as significant enhancements of bone tissue minerals.
Conclusion:
The findings affirmed the potency of nHa, nHa/C, and nHa/S as auspicious nanoplat-forms for repairing bone defects in the osteoporotic rat model. The positive effect of the inspected nanoformulations arose from bone formation indicators in serum and tissue, and additionally, the reinforcement of bone density and content, which were verified by the histopathological description of bone tissue sections.
Collapse
Affiliation(s)
- Hadeer A. Aglan
- Hormones Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | | | - Rasha E. Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gilane M. Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H. Ahmed
- Hormones Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Fouad-Elhady EA, Aglan HA, Hassan RE, Ahmed HH, Sabry GM. Modulation of bone turnover aberration: A target for management of primary osteoporosis in experimental rat model. Heliyon 2020; 6:e03341. [PMID: 32072048 PMCID: PMC7011045 DOI: 10.1016/j.heliyon.2020.e03341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a skeletal degenerative disease characterised by abnormal bone turnover with scant bone formation and overabundant bone resorption. The present approach was intended to address the potency of nanohydroxyapatite (nHA), chitosan/hydroxyapatite nanocomposites (nCh/HA) and silver/hydroxyapatite nanoparticles (nAg/HA) to modulate bone turnover deviation in primary osteoporosis induced in the experimental model. Characterisation techniques such as TEM, zeta-potential, FT-IR and XRD were used to assess the morphology, the physical as well as the chemical features of the prepared nanostructures. The in vivo experiment was conducted on forty-eight adult female rats, randomised into 6 groups (8 rats/group), (1) gonad-intact, (2) osteoporotic group, (3) osteoporotic + nHA, (4) osteoporotic + nCh/HA, (5) osteoporotic + nAg/HA and (6) osteoporotic + alendronate (ALN). After three months of treatment, serum sclerostin (SOST), bone alkaline phosphatase (BALP) and bone sialoprotein (BSP) levels were quantified using ELISA. Femur bone receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and cathepsin K (CtsK) mRNA levels were evaluated by quantitative RT-PCR. Moreover, alizarin red S staining was applied to determine the mineralisation intensity of femur bone. Findings in the present study indicated that treatment with nHA, nCh/HA or nAg/HA leads to significant repression of serum SOST, BALP and BSP levels parallel to a significant down-regulation of RANKL and CtsK gene expression levels. On the other side, significant enhancement in the calcification intensity of femur bone has been noticed. The outcomes of this experimental setting ascertained the potentiality of nHA, nCh/HA and nAg/HA as promising nanomaterials in attenuating the excessive bone turnover in the primary osteoporotic rat model. The mechanisms behind the efficacy of the investigated nanostructures involved the obstacle of serum and tissue indices of bone resorption besides the strengthening of bone mineralisation.
Collapse
Affiliation(s)
- Enas A Fouad-Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Gilane M Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Wang Y, Zhou Y, Cai L, Guo J, Xu Y, Zhang H, Ji L, Song W. Facile Preparation of Charcoal Nanomaterial from Fishery Waste with Remarkable Adsorption Ability. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1318. [PMID: 31018517 PMCID: PMC6515418 DOI: 10.3390/ma12081318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022]
Abstract
In this study, modified activated fishbone charcoal (MAFC) was successfully prepared to remove emulsified oil from oily wastewater. Various characteristic techniques, including SEM, XRD, FTIR, and BET, were employed to investigate the morphology, texture, and surface properties of as-prepared samples. BET results demonstrated that the specific surface area of fishbone charcoal increased from 69.8 m2/g to 206.0 m2/g after treatment with K2CO3 as an activating agent, while the total pore volume of MAFC increased from 0.003 cm3/g to 0.3 cm3/g, accompanied by the formation of abundant pore structures. It was observed that 90.1% of emulsified oil (100 mg/L) was successfully removed by MAFC under our experimental conditions. The results of a kinetic and isotherm model analysis indicated that the adsorption experimental data were not only consistent with the Langmuir adsorption isotherm but were also well-described by the pseudo-second-order adsorption model. It is expected that this highly efficient and inexpensive MAFC can be a promising bio-adsorbent for removing organic pollutants from industrial wastewater.
Collapse
Affiliation(s)
- Yaning Wang
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yarui Zhou
- School of Naval Architecture and Mechanical-Electrical Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Lu Cai
- College of Environmental and Science Technology, Donghua University, Shanghai 201620, China.
| | - Jian Guo
- College of Food and Medical, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yong Xu
- Zhoushan National Oil Reserve Base Co., Ltd., Zhoushan 316022, China.
| | - Hailong Zhang
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Lili Ji
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wendong Song
- College of Petrochemical and Energy Engineering, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
5
|
Pashaei M, Mehdipour E, Azaroon M. Engineered mesoporous ionic-modified γ-Fe2
O3
@hydroxyapatite decorated with palladium nanoparticles and its catalytic properties in water. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mokhtar Pashaei
- Department of Chemistry, Faculty of Science; Lorestan University; Khoramabad Iran
| | - Ebrahim Mehdipour
- Department of Chemistry, Faculty of Science; Lorestan University; Khoramabad Iran
| | - Maedeh Azaroon
- Chemistry Department, College of Science; Shahid Chamran University of Ahvaz; Ahvaz Iran
| |
Collapse
|
6
|
Yang X, Li Y, Liu X, Zhang R, Feng Q. In Vitro Uptake of Hydroxyapatite Nanoparticles and Their Effect on Osteogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:2036176. [PMID: 30018644 PMCID: PMC6029469 DOI: 10.1155/2018/2036176] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
There have been many applications in biomedical fields based on hydroxyapatite nanoparticles (HA NPs) over the past decades. However, the biocompatibility of HANPs is affected by exposure dose, particle size, and the way of contact with cells. The objective of this study is to investigate the effect of HA NPs with different sizes on osteogenesis using human mesenchymal stem cells (hMSCs). Three different-sized HA NPs (~50, ~100, and ~150 nm, resp.) were synthesized to study the cytotoxicity, cellular uptake, and effect on osteogenic differentiation of hMSCs. The results clearly showed that each size of HA NPs had dose-dependent cytotoxicity on hMSCs. It was found that HA NPs could be uptaken into hMSCs. The osteogenic differentiation of hMSCs was evaluated through alkaline phosphatase (ALP) activity measurement, ALP staining, immunofluorescent staining for osteopontin (OPN), and real-time polymerase chain reaction (RT-PCR) examination. As expected, HA NPs of all sizes could promote the differentiation of hMSCs towards osteoblast lineage. Among the three sizes, smaller-sized HA NPs (~50 and ~100 nm) appeared to be more effective in stimulating osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Li
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying 257034, China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Yang X, Li Y, Huang Q, Liu X, Zhang R, Feng Q. The effect of hydroxyapatite nanoparticles on adipogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2018; 106:1822-1831. [DOI: 10.1002/jbm.a.36378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/26/2017] [Accepted: 02/15/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Yuanyuan Li
- Department of Stomatology; Shengli Oilfield Central Hospital; Dongying 257034 China
| | - Qianli Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Graduate School at Shenzhen, Tsinghua University; Shenzhen 518055 China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China; School of Materials Science and Engineering, Tsinghua University; Beijing 100084 China
| |
Collapse
|
8
|
Ignjatović N, Vranješ Djurić S, Mitić Z, Janković D, Uskoković D. Investigating an organ-targeting platform based on hydroxyapatite nanoparticles using a novel in situ method of radioactive ¹²⁵Iodine labeling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:439-46. [PMID: 25175234 DOI: 10.1016/j.msec.2014.07.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/07/2014] [Accepted: 07/13/2014] [Indexed: 01/08/2023]
Abstract
In this study, we have investigated the synthesis of nanoparticles of hydroxyapatite (HAp) and hydroxyapatite coated with chitosan (HAp/Ch) and the chitosan-poly-d,l-lactide-co-glycolide polymer blend (HAp/Ch-PLGA) as an organ-targeting system. We have examined and defined the final destination, as well as the dynamics and the pathways of the synthesized particles following intravenous administration in vivo. The XRD, ZP, FT-IR and SEM analyses have confirmed that the hydroxyapatite nanoparticles with d50=72 nm are coated with polymers. Radioactive 125-Iodine ((125)I), a low energy gamma emitter, was used to develop a novel in situ method for the radiolabeling of particles and investigation of their biodistribution. (125)I-labeled particles exhibited high stability in saline and serum over the second day, which justified their use in the following in vivo studies. The biodistribution of (125)I-labeled particles after intravenous injection in rats differed significantly: HAp particles mostly targeted the liver, HAp/Ch the spleen and the liver, while HAp/Ch-PLGA targeted the lungs. Twenty-four hours post injection, HAp particles were excreted completely, while both (125)I-HAp/Ch and (125)I-HAp/Ch-PLGA were retained in the body for a prolonged period of time with more than 20% of radioactivity still found in different organs.
Collapse
Affiliation(s)
- Nenad Ignjatović
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia
| | - Sanja Vranješ Djurić
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Zarko Mitić
- Faculty of Medicine, Department of Pharmacy, University of Niš, Bulevar dr Zorana Đinđića 81, 18000 Niš, Serbia
| | - Drina Janković
- Laboratory for Radioisotopes, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia
| | - Dragan Uskoković
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Science and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia.
| |
Collapse
|
9
|
Pham Minh D, Tran ND, Nzihou A, Sharrock P. One-Step Synthesis of Calcium Hydroxyapatite from Calcium Carbonate and Orthophosphoric Acid under Moderate Conditions. Ind Eng Chem Res 2013. [DOI: 10.1021/ie302422d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Doan Pham Minh
- Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus
Jarlard, F−81013 Albi cedex 09, France
| | - Ngoc Dung Tran
- Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus
Jarlard, F−81013 Albi cedex 09, France
| | - Ange Nzihou
- Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus
Jarlard, F−81013 Albi cedex 09, France
| | - Patrick Sharrock
- Université de Toulouse, SIMAD, IUT Paul Sabatier, Avenue Georges Pompidou, 81104
Castres, France
| |
Collapse
|
10
|
Basu B, Swain SK, Sarkar D. Cryogenically cured hydroxyapatite–gelatin nanobiocomposite for bovine serum albumin protein adsorption and release. RSC Adv 2013. [DOI: 10.1039/c3ra42369g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|