1
|
Zhang Y, Liu Y, Lu Y, Gong S, Haick H, Cheng W, Wang Y. Tailor-Made Gold Nanomaterials for Applications in Soft Bioelectronics and Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405046. [PMID: 39022844 DOI: 10.1002/adma.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shu Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
2
|
Wu J, Sato Y, Guo Y. Microelectronic fibers for multiplexed sweat sensing. Anal Bioanal Chem 2023:10.1007/s00216-022-04510-9. [PMID: 36622394 PMCID: PMC9838444 DOI: 10.1007/s00216-022-04510-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
Wearable bioelectronics are gaining extraordinary attention due to their capabilities to achieve continuous monitoring of human health status. However, mainstream manufacturing technologies, including photolithography and printing technology, limit current wearable bioelectronics on 2D planar structures with little surface area in contact with the body. It thus limits the amount of physiological information that current wearable bioelectronics could obtain. Furthermore, they need to be firmly attached to the body, affecting the wearing comfort. In this study, we leveraged the versatile thermal drawing process and developed a flexible microelectronic fiber with bioanalytical functions that could be woven into textiles as a new form of wearable bioelectronics. Within a single strand of fiber, we successfully integrated all-in-one multiplexed electrochemical sensing capabilities, with the sweat as the primary object. Adopting the laser micromachining technique, we developed biosensing functions on the longitudinal surface of the fiber with two sensing electrodes for Na+ and uric acid (UA), respectively, together with a pseudo reference electrode (p-RE). We carefully characterized the all-in-one multiplexed sensing performance of the fiber and demonstrated its successful application in sweat sensing based on its textile forms. The results show significant potential for application in wearable textiles for monitoring key health signals of humans.
Collapse
Affiliation(s)
- Jingxuan Wu
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Yuichi Sato
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-0845 Japan
| | - Yuanyuan Guo
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-0845 Japan ,Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579 Japan ,Graduate School of Medicine, Tohoku University, Sendai, 980-8575 Japan
| |
Collapse
|
3
|
Liu YL, Zhu J, Weng GJ, Li JJ, Zhao JW. Theoretical simulation of nonlinear regulation of wall thickness dependent longitudinal surface plasmon in pentagonal gold nanotubes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121037. [PMID: 35189490 DOI: 10.1016/j.saa.2022.121037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this paper, the longitudinal plasmon mode optical properties and localized electric field distribution of a single pentagonal gold nanotube are investigated for the first time by the discrete dipole approximation. It is found that pentagonal gold nanotube has stronger electric field distribution compared with circular gold nanotubes when the incident wavelength is located at the plasmon resonance peak. Additionally, we observed that the longitudinal plasmon resonance peak can blue shift nonlinearly with increasing wall thickness, but red shifts linearly with the increase of the length of the pentagonal gold nanotube. The localized electric field analysis reveals that the longitudinal plasmon peak of the pentagonal gold nanotube originates from the dipole resonance mode. The local electric field intensity is controlled by the wall thickness and length. Notably, the effect of wall thickness on the longitudinal plasmon resonance and electric field enhancement can be attributed to the change of the plasmon coupling position and intensity. This work has enriched the theoretical research of pentagonal gold nanotubes and provided ideas for the preparation of high sensitivity nanoprobes biosensors.
Collapse
Affiliation(s)
- Yan-Ling Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
4
|
Determination of Ascorbic Acid in Pharmaceuticals and Food Supplements with the New Potassium Ferrocyanide-Doped Polypyrrole-Modified Platinum Electrode Sensor. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This paper reports the results obtained from the determination of ascorbic acid with platinum-based voltammetric sensors modified with potassium hexacyanoferrate-doped polypyrrole. The preparation of the modified electrodes was carried out by electrochemical polymerization of pyrrole from aqueous solutions, using chronoamperometry. Polypyrrole films were deposited on the surface of the platinum electrode, by applying a constant potential of 0.8 V for 30 s. The thickness of the polymer film was calculated from the chronoamperometric data, and the value was 0.163 μm. Cyclic voltammetry was the method used for the Pt/PPy-FeCN electrode electrochemical characterization in several types of solution, including KCl, potassium ferrocyanide, and ascorbic acid. The thin doped polymer layer showed excellent sensitivity for ascorbic acid detection. From the voltammetric studies carried out in solutions of different concentrations of ascorbic acid, ranging from 1 to 100 × 10−6 M, a detection limit of 2.5 × 10−7 M was obtained. Validation of the analyses was performed using pharmaceutical products with different concentrations of ascorbic acid, from different manufacturers and presented in various pharmaceutical forms, i.e., intravascular administration ampoules, chewable tablets, and powder for oral suspension.
Collapse
|
5
|
Chang YJ, Lee MC, Chien YC. Quantitative determination of uric acid using paper-based biosensor modified with graphene oxide and 5-amino-1,3,4-thiadiazole-2-thiol. SLAS Technol 2022; 27:54-62. [PMID: 35058204 DOI: 10.1016/j.slast.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Uric acid is the primary end product of human purine metabolism and has been regarded as a key parameter in urine and blood for monitoring physiological conditions. This paper presents a paper-based biosensor for a quantitative determination of uric acid using electrochemical detection. The working electrode of the biosensor is modified with graphene oxide (GO) and 5-amino-1,3,4-thiadiazole-2-thiol (ATT) by electropolymerizing ATT on the surface of graphene oxide. In this study, cyclic voltammetry (CV) measurements required only 200 μL of analyte solution. The experimental results showed that the oxidation peak current increased as the concentration of uric acid become higher and exhibited a linear relationship in the concentration range of 0.1-10 mM, indicating that this proposed biosensor has high sensitivity. In addition, this biosensor has good selectivity to detect uric acid because ATT has a specific binding with it. In human blood and body fluids, nitrites may be the only factor that can interfere with the detection of uric acid using this proposed biosensor. Nevertheless, uric acid can be discriminated from nitrite in the CV measurement due to different oxidation potentials. Thus, this proposed paper-based biosensor is a promising tool for detecting uric acid in biological samples.
Collapse
Affiliation(s)
- Yaw-Jen Chang
- Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City, 32023, Taiwan.
| | - Ming-Che Lee
- Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City, 32023, Taiwan
| | - You-Chiuan Chien
- Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City, 32023, Taiwan; Changhua Christian Hospital, Changhua City, Changhua County 500, Taiwan
| |
Collapse
|
6
|
Feng J, Liu Y, Shan Y, Xie Y, Chu Z, Jin W. In-situ growth of Cu@CuFe Prussian blue based core-shell nanowires for non-enzymatic electrochemical determination of ascorbic acid with high sensitivity and reusability. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Liu YL, Zhu J, Weng GJ, Li JJ, Zhao JW. Gold nanotubes: synthesis, properties and biomedical applications. Mikrochim Acta 2020; 187:612. [PMID: 33064202 DOI: 10.1007/s00604-020-04460-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022]
Abstract
This review (with 106 references) summarizes the latest progress in the synthesis, properties and biomedical applications of gold nanotubes (AuNTs). Following an introduction into the field, a first large section covers two popular AuNTs synthesis methods. The hard template method introduces anodic alumina oxide template (AAO) and track-etched membranes (TeMs), while the sacrificial template method based on galvanic replacement introduces bimetallic, trimetallic AuNTs and AuNT-semiconductor hybrid materials. Then, the factors affecting the morphology of AuNTs are discussed. The next section covers their unique surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and their catalytic properties. This is followed by overviews on the applications of AuNTs in biosensors, protein transportation, photothermal therapy and imaging. Several tables are presented that give an overview on the wealth of synthetic methods, morphology factors and biological application. A concluding section summarizes the current status, addresses current challenges and gives an outlook on potential applications of AuNTs in biochemical detection and drug delivery.Graphical abstract.
Collapse
Affiliation(s)
- Yan-Ling Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
8
|
Li X, Cao L, Zhang Y, Yan P, Kirk DW. Fabrication and Modeling of an Ultrasensitive Label Free Impedimetric Immunosensor for Aflatoxin B1 based on Protein A Self-assembly Modified Gold 3D Nanotube Electrode ensembles. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Boroumand S, Chamjangali MA, Bagherian G. Double injection/single detection asymmetric flow injection manifold for spectrophotometric determination of ascorbic acid and uric acid: Selection the optimal conditions by MCDM approach based on different criteria weighting methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:203-213. [PMID: 27915157 DOI: 10.1016/j.saa.2016.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
A simple and sensitive double injection/single detector flow injection analysis (FIA) method is proposed for the simultaneous kinetic determination of ascorbic acid (AA) and uric acid (UA). This method is based upon the difference between the rates of the AA and UA reactions with Fe3+ in the presence of 1, 10-phenanthroline (phen). The absorbance of Fe2+/1, 10-phenanthroline (Fe-phen) complex obtained as the product was measured spectrophotometrically at 510nm. To reach a good accuracy in the differential kinetic determination via the mathematical manipulations of the transient signals, different criteria were considered in the selection of the optimum conditions. The multi criteria decision making (MCDM) approach was applied for the selection of the optimum conditions. The importance weights of the evaluation criteria were determined using the analytic hierarchy process, entropy method, and compromised weighting (CW). The experimental conditions (alternatives) were ranked by the technique for order preference by similarity to an ideal solution. Under the selected optimum conditions, the obtained analytical signals were linear in the ranges of 0.50-5.00 and 0.50-4.00mgL-1 for AA and UA, respectively. The 3σ detection limits were 0.07mgL-1 for AA and 0.12mgL-1 for UA. The relative standard deviations for four replicate determinations of AA and UA were 2.03% and 3.30% respectively. The method was also applied for the analysis of analytes in the blood serum, Vitamine C tablets, and tap water with satisfactory results.
Collapse
Affiliation(s)
- Samira Boroumand
- College of Chemistry, Shahrood University of Technology, Shahrood, P.O. Box 36155-316, Iran
| | | | - Ghadamali Bagherian
- College of Chemistry, Shahrood University of Technology, Shahrood, P.O. Box 36155-316, Iran
| |
Collapse
|
10
|
Torati SR, Reddy V, Yoon SS, Kim C. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform. Biosens Bioelectron 2016; 78:483-488. [DOI: 10.1016/j.bios.2015.11.098] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/22/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
11
|
Afraz A, Rafati AA, Najafi M. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:58-68. [PMID: 25280680 DOI: 10.1016/j.msec.2014.07.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022]
Abstract
We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine.
Collapse
Affiliation(s)
- Ahmadreza Afraz
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran.
| | - Mojgan Najafi
- Department of Materials Engineering, Hamedan University of Technology (HUT), 65169 Hamedan, Iran
| |
Collapse
|
12
|
Zare HR, Ghanbari Z, Nasirizadeh N, Benvidi A. Simultaneous determination of adrenaline, uric acid, and cysteine using bifunctional electrocatalyst of ruthenium oxide nanoparticles. CR CHIM 2013. [DOI: 10.1016/j.crci.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|