1
|
Vujin J, Szabó T, Panajotovic R, Végh A, Rinyu L, Nagy L. Photosynthetic reaction center/graphene bio-hybrid for low-power optoelectronics. PHOTOSYNTHETICA 2023; 61:465-472. [PMID: 39649490 PMCID: PMC11586844 DOI: 10.32615/ps.2023.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/02/2023] [Indexed: 12/10/2024]
Abstract
Photosynthetic reaction center (pRC) purified from Rhodobacter sphaeroides 2.4.1 purple bacteria was deposited on a graphene carrier exfoliated from the liquid phase and layered on the surface of SiO2/Si substrate for optoelectronic application. Light-induced changes in the drain-source current vs. gate voltage are demonstrated. Dried photosynthetic reaction centers/graphene composite on SiO2/Si shows a photochemical/-physical activity, as a result of interaction with the current flow in the graphene carrier matrix. The current changes are sensitive to light, due to the contribution from the charge separation in the pRC, and to the applied gate and drain-source voltages.
Collapse
Affiliation(s)
- J. Vujin
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - T. Szabó
- Institute of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
| | - R. Panajotovic
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - A.G. Végh
- HUN-REN Biological Research Centre, Szeged, Institute of Biophysics, Temesvári Krt. 62, Szeged, Hungary
| | - L. Rinyu
- Isotope Climatology and Environmental Research Centre (ICER), HUN-REN Institute for Nuclear Research, Bem tér 18/c, 4026 Debrecen, Hungary
| | - L. Nagy
- Institute of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
- HUN-REN Biological Research Centre, Szeged, Institute of Plant Biology, Temesvári Krt. 62, Szeged, Hungary
| |
Collapse
|
2
|
Szabó T, Magyar M, Hajdu K, Dorogi M, Nyerki E, Tóth T, Lingvay M, Garab G, Hernádi K, Nagy L. Structural and Functional Hierarchy in Photosynthetic Energy Conversion-from Molecules to Nanostructures. NANOSCALE RESEARCH LETTERS 2015; 10:458. [PMID: 26619890 PMCID: PMC4666181 DOI: 10.1186/s11671-015-1173-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P(+)(QAQB)(-) charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an electronic interaction between the protein and the inorganic carrier matrices. This can be a basis of sensing element of bio-hybrid device for biosensor and/or optoelectronic applications.
Collapse
Affiliation(s)
- Tibor Szabó
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Melinda Magyar
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Kata Hajdu
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Márta Dorogi
- Biological Research Center, Hungarian Academy of Sciences, Temesvari krt.62, H-6726, Szeged, Hungary.
- Biophotonics R&D Ltd., Temesvari krt.62, H-6726, Szeged, Hungary.
| | - Emil Nyerki
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Tünde Tóth
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Mónika Lingvay
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| | - Győző Garab
- Biological Research Center, Hungarian Academy of Sciences, Temesvari krt.62, H-6726, Szeged, Hungary.
- Biophotonics R&D Ltd., Temesvari krt.62, H-6726, Szeged, Hungary.
| | - Klára Hernádi
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
| | - László Nagy
- Department of Medical Physics and Informatics, University of Szeged, Rerrich B. tér 1., H-6721, Szeged, Hungary.
| |
Collapse
|
3
|
Nagy L, Magyar M, Szabó T, Hajdu K, Giotta L, Dorogi M, Milano F. Photosynthetic machineries in nano-systems. Curr Protein Pept Sci 2015; 15:363-73. [PMID: 24678673 PMCID: PMC4030625 DOI: 10.2174/1389203715666140327102757] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 11/25/2022]
Abstract
Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms,
where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The
protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications
are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite
materials have been assembled by using reaction centres and different carrier matrices for different purposes
in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides).
In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to
be overcome in the different applications. We will also show possible research directions for the close future in this specific
field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Milano
- Institute of Medical Physics and Informatics, University of Szeged, Rerrich B. ter 1, 6720 Szeged, Hungary.
| |
Collapse
|
4
|
Kim Y, Shin SA, Lee J, Yang KD, Nam KT. Hybrid system of semiconductor and photosynthetic protein. NANOTECHNOLOGY 2014; 25:342001. [PMID: 25091409 DOI: 10.1088/0957-4484/25/34/342001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.
Collapse
|