1
|
Sun M, Elkhodiry M, Shi L, Xue Y, Abyaneh MH, Kossar AP, Giuglaris C, Carter SL, Li RL, Bacha E, Ferrari G, Kysar J, Myers K, Kalfa D. A biomimetic multilayered polymeric material designed for heart valve repair and replacement. Biomaterials 2022; 288:121756. [PMID: 36041938 PMCID: PMC9801615 DOI: 10.1016/j.biomaterials.2022.121756] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/03/2023]
Abstract
Materials currently used to repair or replace a heart valve are not durable. Their limited durability related to structural degeneration or thrombus formation is attributed to their inadequate mechanical properties and biocompatibility profiles. Our hypothesis is that a biostable material that mimics the structure, mechanical and biological properties of native tissue will improve the durability of these leaflets substitutes and in fine improve the patient outcome. Here, we report the development, optimization, and testing of a biomimetic, multilayered material (BMM), designed to replicate the native valve leaflets. Polycarbonate urethane and polycaprolactone have been processed as film, foam, and aligned fibers to replicate the leaflet's architecture and anisotropy, through solution casting, lyophilization, and electrospinning. Compared to the commercialized materials, our BMMs exhibited an anisotropic behavior and a closer mechanical performance to the aortic leaflets. The material exhibited superior biostability in an accelerated oxidization environment. It also displayed better resistance to protein adsorption and calcification in vitro and in vivo. These results will pave the way for a new class of advanced synthetic material with long-term durability for surgical valve repair or replacement.
Collapse
Affiliation(s)
- Mingze Sun
- Department of Surgery, Columbia University, New York, NY, USA
| | | | - Lei Shi
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yingfei Xue
- Department of Surgery, Columbia University, New York, NY, USA
| | | | | | | | | | - Richard L. Li
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Emile Bacha
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Jeffrey Kysar
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - David Kalfa
- Department of Surgery, Columbia University, New York, NY, USA,Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York, NY, USA,Corresponding author. Pediatric Cardiac Surgery, New-York Presbyterian - Morgan Stanley Children’s Hospital, Columbia University Medical Center, 3959 Broadway, CHN-274, New York, NY, 10032, USA. (D. Kalfa)
| |
Collapse
|
2
|
Fabrication and in-vitro characterization of a polymeric aortic valve for minimally invasive valve replacement. J Mech Behav Biomed Mater 2020; 115:104294. [PMID: 33383376 DOI: 10.1016/j.jmbbm.2020.104294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023]
Abstract
The valve replacement therapy is the standard treatment for severe heart valve diseases. Nowadays, two types of commercial prosthesis are available: mechanical and biological, but both of them have severe limitations. Moreover, alternative therapeutic approach for valve replacement, based on minimally invasive techniques (MIAVR), motivates the search for new valve materials. In this study a polyurethane-based self-expandable tri-leaflets heart valve compatible with MIAVR procedure is proposed. The device is based on the development, fabrication and characterization of three different elements: the leaflets, the polymeric stent for supporting the leaflets, and the external metallic stent for anchoring the valve to the native aortic root. The polymeric stent and the valve leaflets were fabricated using a thermoplastic silicone-polycarbonate-urethane using 3D printing and spray technology while the external metallic stent was made in nickel titanium (Nitinol) to obtain a self-expandable valve after the crimping process. The three elements were assembled in the completed device and tested by crimping, fatigue and fluid-dynamic test. The novel polymeric valve proposed showed promising results about valve crimping capabilities, durability and fluid dynamic performances. This approach could offer advantages such as low cost and to produce a tailor-made device basing on patient's imaging data. Moreover, the selected biomaterial offers the potential to have a device that could need of permanent anticoagulation and lack of calcification.
Collapse
|
3
|
Kiesendahl N, Schmitz C, Menne M, Schmitz-Rode T, Steinseifer U. In Vitro Calcification of Bioprosthetic Heart Valves: Test Fluid Validation on Prosthetic Material Samples. Ann Biomed Eng 2020; 49:885-899. [PMID: 32989592 PMCID: PMC7851015 DOI: 10.1007/s10439-020-02618-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/10/2020] [Indexed: 11/25/2022]
Abstract
Calcification is a major failure mode of bioprosthetic heart valves. So far, cost and time saving in vitro analyses of calcification potentials are unreliable, mostly due to superficial or spontaneous precipitation of the applied fluids. In this study, we developed a near-physiological non-spontaneously precipitating fluid for an accelerated in vitro calcification assessment, and validated it by analyzing the calcification potential of two prosthetic materials within two reference-tests. The first test focused on the comparison of four calcification fluids under dynamic contact with n=12 commercial bovine pericardium patches. The second one focused on the validation of the most appropriate fluid by analyzing the calcification potential of pericardium vs. polyurethane. The patches were mounted in separate test compartments and treated simultaneously with the respective fluids at an accelerated test frequency. Calcification propensity and progression were detected macroscopically and microscopically. Structural analyses of all deposits indicated hydroxyapatite by X-ray powder diffraction, which is also most commonly observed in vivo. Histological examination by von Kossa staining showed matrix internal and superficial calcifications, depending on the fluid composition. The present study reveals promising results towards the development of a meaningful, cost and time saving in vitro analysis of the calcification potential of bioprosthetic heart valves.
Collapse
Affiliation(s)
- N Kiesendahl
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.,ac.biomed GmbH, Aachen, Germany
| | - C Schmitz
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.,ac.biomed GmbH, Aachen, Germany
| | - M Menne
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - T Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany
| | - U Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
4
|
Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.12.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Kheradvar A, Groves EM, Falahatpisheh A, Mofrad MK, Hamed Alavi S, Tranquillo R, Dasi LP, Simmons CA, Jane Grande-Allen K, Goergen CJ, Baaijens F, Little SH, Canic S, Griffith B. Emerging Trends in Heart Valve Engineering: Part IV. Computational Modeling and Experimental Studies. Ann Biomed Eng 2015. [PMID: 26224522 DOI: 10.1007/s10439-015-1394-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this final portion of an extensive review of heart valve engineering, we focus on the computational methods and experimental studies related to heart valves. The discussion begins with a thorough review of computational modeling and the governing equations of fluid and structural interaction. We then move onto multiscale and disease specific modeling. Finally, advanced methods related to in vitro testing of the heart valves are reviewed. This section of the review series is intended to illustrate application of computational methods and experimental studies and their interrelation for studying heart valves.
Collapse
Affiliation(s)
- Arash Kheradvar
- Department of Biomedical Engineering, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2410 Engineering Hall, Irvine, CA, 92697-2730, USA. .,Department of Medicine, Division of Cardiology, University of California, Irvine School of Medicine, Irvine, CA, USA.
| | - Elliott M Groves
- Department of Biomedical Engineering, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2410 Engineering Hall, Irvine, CA, 92697-2730, USA.,Department of Medicine, Division of Cardiology, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Ahmad Falahatpisheh
- Department of Biomedical Engineering, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2410 Engineering Hall, Irvine, CA, 92697-2730, USA
| | - Mohammad K Mofrad
- Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, USA
| | - S Hamed Alavi
- Department of Biomedical Engineering, The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2410 Engineering Hall, Irvine, CA, 92697-2730, USA
| | - Robert Tranquillo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Lakshmi P Dasi
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Craig A Simmons
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | | | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Frank Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stephen H Little
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Suncica Canic
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - Boyce Griffith
- Department of Mathematics, Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
6
|
A review of: Application of synthetic scaffold in tissue engineering heart valves. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:556-65. [DOI: 10.1016/j.msec.2014.12.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/26/2014] [Accepted: 12/05/2014] [Indexed: 01/28/2023]
|
7
|
In-vitro calcification study of polyurethane heart valves. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 35:335-40. [DOI: 10.1016/j.msec.2013.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/17/2013] [Accepted: 11/09/2013] [Indexed: 11/23/2022]
|