1
|
Xu H, Liu Y, Huang Y, Zhang J, Qin Z, Wei B, Xu C, Zhu L, Wang H. The impact of spatial structures of collagen on the hemostatic properties of collagen/calcium alginate composite membranes. Int J Biol Macromol 2025; 288:138753. [PMID: 39674447 DOI: 10.1016/j.ijbiomac.2024.138753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Biomacromolecule-based hemostatic materials with biocompatibility and biodegradability have become a topic of significant research for the treatment of wound hemorrhage. Among available biomacromolecules, collagen and alginate are particularly promising. Although collagen and alginate composite materials have been developed, the impact of the spatial structures of collagen on the hemostatic properties of these materials remains to be fully understood. Collagen fibers, formed through self-assembly, share the same composition as collagen but exhibit distinct spatial structures. In this study, calcium alginate (CaAlg) membranes containing collagen (Col) or collagen fibers (Col-fiber) were fabricated. By adjusting the ratio of collagen to alginate, Col/CaAlg and Col-fiber/CaAlg composite membranes with favourable tensile strength and water retention ability were selected. The impact of collagen's spatial structures on the structures and properties of composite membranes was investigated, revealing that collagen fibers enhance the cytocompatibility, blood compatibility, and hemostatic performance of alginate membranes more effectively than collagen. Therefore, the Col-fiber/CaAlg membranes could be a promising candidate for hemostatic applications.
Collapse
Affiliation(s)
- Haofei Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yang Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Yaozhi Huang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Zhenhua Qin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China.
| |
Collapse
|
2
|
Tian Z, Zhao W, Wang Y, Gao P, Wen H, Dan W, Li J. Zirconium ion mediated collagen nanofibrous hydrogels with high mechanical strength. J Colloid Interface Sci 2024; 674:1004-1018. [PMID: 38964000 DOI: 10.1016/j.jcis.2024.06.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Low mechanical strength is still the key question for collagen hydrogel consisting of nanofibrils as hard tissue repair scaffolds with no loss of biological function. In this work, novel collagen nanofibrous hydrogels with high mechanical strength were fabricated based on the pre-protection of trisodium citrate masked Zr(SO4)2 solution for collagen self-assembling nanofibrils and then further coordination with Zr(SO4)2 solution. The mature collagen nanofibrils with d-period were observed in Zr(IV) mediated collagen hydrogels by AFM when the Zr(IV) concentration was ≥ 10 mmol/L, and the distribution of zirconium element was uniform. Due to the coordination of Zr(IV) with ─COOH, ─NH2 and ─OH within collagen and the tighter entanglement of collagen nanofibrils, the elastic modulus and compressive strength of Zr(IV) mediated collagen nanofibrous hydrogel were 208.3 and 1103.0 kPa, which were approximate 77 and 12 times larger than those of pure collagen hydrogel, respectively. Moreover, the environmental stability such as thermostability, swelling ability and biodegradability got outstanding improvements and could be regulated by Zr(IV) concentration. Most importantly, the resultant hydrogel showed excellent biocompatibility and even accelerated cell proliferation.
Collapse
Affiliation(s)
- Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; National Experimental Teaching Demonstration Center of Light Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Xingye Leather Technology Co., Ltd., Quanzhou 362000, PR China.
| | - Wenjie Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Ying Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Panpan Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Huitao Wen
- Xingye Leather Technology Co., Ltd., Quanzhou 362000, PR China
| | - Weihua Dan
- Xingye Leather Technology Co., Ltd., Quanzhou 362000, PR China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China
| |
Collapse
|
3
|
Different mechanical properties of the gamma-irradiated gelatin gels prepared through the different cooling processes. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Mohd N, Razali M, Ghazali MJ, Abu Kasim NH. Current Advances of Three-Dimensional Bioprinting Application in Dentistry: A Scoping Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6398. [PMID: 36143709 PMCID: PMC9504181 DOI: 10.3390/ma15186398] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Three-dimensional (3D) bioprinting technology has emerged as an ideal approach to address the challenges in regenerative dentistry by fabricating 3D tissue constructs with customized complex architecture. The dilemma with current dental treatments has led to the exploration of this technology in restoring and maintaining the function of teeth. This scoping review aims to explore 3D bioprinting technology together with the type of biomaterials and cells used for dental applications. Based on PRISMA-ScR guidelines, this systematic search was conducted by using the following databases: Ovid, PubMed, EBSCOhost and Web of Science. The inclusion criteria were (i) cell-laden 3D-bioprinted construct; (ii) intervention to regenerate dental tissue using bioink, which incorporates living cells or in combination with biomaterial; and (iii) 3D bioprinting for dental applications. A total of 31 studies were included in this review. The main 3D bioprinting technique was extrusion-based approach. Novel bioinks in use consist of different types of natural and synthetic polymers, decellularized extracellular matrix and spheroids with encapsulated mesenchymal stem cells, and have shown promising results for periodontal ligament, dentin, dental pulp and bone regeneration application. However, 3D bioprinting in dental applications, regrettably, is not yet close to being a clinical reality. Therefore, further research in fabricating ideal bioinks with implantation into larger animal models in the oral environment is very much needed for clinical translation.
Collapse
Affiliation(s)
- Nurulhuda Mohd
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Masfueh Razali
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Mariyam Jameelah Ghazali
- Department of Mechanical & Manufacturing Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Noor Hayaty Abu Kasim
- DLima Dental Clinic, 44-A, Jalan Plumbum N7/N, Seksyen 7, Shah Alam 40000, Selangor, Malaysia
| |
Collapse
|
5
|
Carvalho EM, Kumar S. Lose the stress: Viscoelastic materials for cell engineering. Acta Biomater 2022; 163:146-157. [PMID: 35405329 DOI: 10.1016/j.actbio.2022.03.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Biomaterials are widely used to study and control a variety of cell behaviors, including stem cell differentiation, organogenesis, and tumor invasion. While considerable attention has historically been paid to biomaterial elastic (storage) properties, it has recently become clear that viscous (loss) properties can also powerfully influence cell behavior. Here we review advances in viscoelastic materials for cell engineering. We begin by discussing collagen, an abundant naturally occurring biomaterial that derives its viscoelastic properties from its fibrillar architecture, which enables dissipation of applied stresses. We then turn to two other naturally occurring biomaterials that are more frequently modified for engineering applications, alginate and hyaluronic acid, whose viscoelastic properties may be tuned by modulating network composition and crosslinking. We also discuss the potential of exploiting engineered fibrous materials, particularly electrospun fiber-based materials, to control viscoelastic properties. Finally, we review mechanisms through which cells process viscous and viscoelastic cues as they move along and within these materials. The ability of viscoelastic materials to relax cell-imposed stresses can dramatically alter migration on two-dimensional surfaces and confinement-imposed barriers to engraftment and infiltration in three-dimensional scaffolds. STATEMENT OF SIGNIFICANCE: Most tissues and many biomaterials exhibit some viscous character, a property that is increasingly understood to influence cell behavior in profound ways. This review discusses the origin and significance of viscoelastic properties of common biomaterials, as well as how these cues are processed by cells to influence migration. A deeper understanding of the mechanisms of viscoelastic behavior in biomaterials and how cells interpret these inputs should aid the design and selection of biomaterials for specific applications.
Collapse
Affiliation(s)
- Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; San Francisco Graduate, Program in Bioengineering, University of California, Berkeley-University of California, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Nordsletten D, Capilnasiu A, Zhang W, Wittgenstein A, Hadjicharalambous M, Sommer G, Sinkus R, Holzapfel GA. A viscoelastic model for human myocardium. Acta Biomater 2021; 135:441-457. [PMID: 34487858 DOI: 10.1016/j.actbio.2021.08.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Understanding the biomechanics of the heart in health and disease plays an important role in the diagnosis and treatment of heart failure. The use of computational biomechanical models for therapy assessment is paving the way for personalized treatment, and relies on accurate constitutive equations mapping strain to stress. Current state-of-the art constitutive equations account for the nonlinear anisotropic stress-strain response of cardiac muscle using hyperelasticity theory. While providing a solid foundation for understanding the biomechanics of heart tissue, most current laws neglect viscoelastic phenomena observed experimentally. Utilizing experimental data from human myocardium and knowledge of the hierarchical structure of heart muscle, we present a fractional nonlinear anisotropic viscoelastic constitutive model. The model is shown to replicate biaxial stretch, triaxial cyclic shear and triaxial stress relaxation experiments (mean error ∼7.68%), showing improvements compared to its hyperelastic (mean error ∼24%) counterparts. Model sensitivity, fidelity and parameter uniqueness are demonstrated. The model is also compared to rate-dependent biaxial stretch as well as different modes of biaxial stretch, illustrating extensibility of the model to a range of loading phenomena. STATEMENT OF SIGNIFICANCE: The viscoelastic response of human heart tissues has yet to be integrated into common constitutive models describing cardiac mechanics. In this work, a fractional viscoelastic modeling approach is introduced based on the hierarchical structure of heart tissue. From these foundations, the current state-of-the-art biomechanical models of the heart muscle are transformed using fractional viscoelasticity, replicating passive muscle function across multiple experimental tests. Comparisons are drawn with current models to highlight the improvements of this approach and predictive responses show strong qualitative agreement with experimental data. The proposed model presents the first constitutive model aimed at capturing viscoelastic nonlinear response across multiple testing regimes, providing a platform for better understanding the biomechanics of myocardial tissue in health and disease.
Collapse
Affiliation(s)
- David Nordsletten
- Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK; Departments of Biomedical Engineering and Cardiac Surgery, University of Michigan, North Campus Research Center, Building 20, 2800 Plymouth Rd, Ann Arbor 48109, MI, USA.
| | - Adela Capilnasiu
- Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK
| | - Will Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Anna Wittgenstein
- Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK
| | | | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Ralph Sinkus
- Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK; Inserm U1148, LVTS, University Paris Diderot, University Paris 13, Paris, France
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Tamay DG, Hasirci N. Bioinks-materials used in printing cells in designed 3D forms. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1072-1106. [PMID: 33720806 DOI: 10.1080/09205063.2021.1892470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Use of materials to activate non-functional or damaged organs and tissues goes back to early ages. The first materials used for this purpose were metals, and in time, novel materials such as ceramics, polymers and composites were introduced to the field to serve in medical applications. In the last decade, the advances in material sciences, cell biology, technology and engineering made 3D printing of living tissues or organ models in the designed structure and geometry possible by using cells alone or together with hydrogels through additive manufacturing. This review aims to give a brief information about the chemical structures and properties of bioink materials and their applications in the production of 3D tissue constructs.
Collapse
Affiliation(s)
- Dilara Goksu Tamay
- BIOMATEN - Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey.,Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
| | - Nesrin Hasirci
- BIOMATEN - Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey.,Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.,Department of Chemistry, Middle East Technical University, Ankara, Turkey.,Tissue Engineering and Biomaterial Research Center, Near East University, TRNC, Mersin 10, Turkey
| |
Collapse
|
8
|
Amann E, Amirall A, Franco AR, Poh PSP, Sola Dueñas FJ, Fuentes Estévez G, Leonor IB, Reis RL, van Griensven M, Balmayor ER. A Graded, Porous Composite of Natural Biopolymers and Octacalcium Phosphate Guides Osteochondral Differentiation of Stem Cells. Adv Healthc Mater 2021; 10:e2001692. [PMID: 33448144 PMCID: PMC11468142 DOI: 10.1002/adhm.202001692] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/19/2020] [Indexed: 01/08/2023]
Abstract
Lesions involving the osteochondral unit are difficult to treat. Biomimetic scaffolds are previously shown as promising alternative. Such devices often lack multiple functional layers that mimic bone, cartilage, and the interface. In this study, multilayered scaffolds are developed based on the use of natural extracellular matrix (ECM)-like biopolymers. Particular attention is paid to obtain a complex matrix that mimics the native osteochondral transition. Porous, sponge-like chitosan-collagen-octacalcium phosphate (OCP) scaffolds are obtained. Collagen content increases while the amount of OCP particles decreases toward the cartilage layer. The scaffolds are bioactive as a mineral layer is deposited containing hydroxyapatite at the bony side. The scaffolds stimulate proliferation of human adipose-derived mesenchymal stem cells, but the degree of proliferation depends on the cell seeding density. The scaffolds give rise to a zone-specific gene expression. RUNX2, COL1A1, BGLAP, and SPP1 are upregulated in the bony layer of the scaffold. SOX9 is upregulated concomitant with COL2A1 expression in the cartilage zone. Mineralization in presence of the cells is prominent in the bone area with Ca and P steadily increasing over time. These results are encouraging for the fabrication of biomimetic scaffolds using ECM-like materials and featuring gradients that mimic native tissues and their interface.
Collapse
Affiliation(s)
- Elisabeth Amann
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
| | | | - Albina R. Franco
- 3B's Research GroupI3Bs‐Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveparkBarcoGuimarães4805‐017Portugal
- ICVS/3B's—PT Government Associate LaboratoryBragaGuimarãesPortugal
| | - Patrina S. P. Poh
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
- Julius Wolff InstituteCharité—Universitätsmedizin Berlin13353BerlinGermany
| | | | | | - Isabel B. Leonor
- 3B's Research GroupI3Bs‐Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveparkBarcoGuimarães4805‐017Portugal
- ICVS/3B's—PT Government Associate LaboratoryBragaGuimarãesPortugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs‐Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveparkBarcoGuimarães4805‐017Portugal
- ICVS/3B's—PT Government Associate LaboratoryBragaGuimarãesPortugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of MinhoAveparkBarcoGuimarães4805‐017Portugal
| | - Martijn van Griensven
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Elizabeth R. Balmayor
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
9
|
Shelah O, Wertheimer S, Haj-Ali R, Lesman A. Coral-Derived Collagen Fibers for Engineering Aligned Tissues. Tissue Eng Part A 2020; 27:187-200. [PMID: 32524890 DOI: 10.1089/ten.tea.2020.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing need for biomaterial scaffolds that support engineering of soft tissue substitutes featuring structure and mechanical properties similar to those of the native tissue. This work introduces a new biomaterial system that is based on centimeter-long collagen fibers extracted from Sarcophyton soft corals, wrapped around frames to create aligned fiber arrays. The collagen arrays displayed hyperelastic and viscoelastic mechanical properties that resembled those of collagenous-rich tissues. Cytotoxicity tests demonstrated that the collagen arrays were nontoxic to fibroblast cells. In addition, fibroblast cells seeded on the collagen arrays demonstrated spreading and increased growth for up to 40 days, and their orientation followed that of the aligned fibers. The possibility to combine the collagen cellular arrays with poly(ethylene glycol) diacrylate (PEG-DA) hydrogel, to create integrated biocomposites, was also demonstrated. This study showed that coral collagen fibers in combination with a hydrogel can support biological tissue-like growth, with predefined orientation over a long period of time in culture. As such, it is an attractive scaffold for the construction of various engineered tissues to match their native oriented morphology.
Collapse
Affiliation(s)
- Ortal Shelah
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Shir Wertheimer
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| |
Collapse
|
10
|
Tian Z, Shen L, Liu W, Li G. Construction of collagen gel with high viscoelasticity and thermal stability via combining cross-linking and dehydration. J Biomed Mater Res A 2020; 108:1934-1943. [PMID: 32319162 DOI: 10.1002/jbm.a.36956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/17/2020] [Accepted: 03/28/2020] [Indexed: 11/09/2022]
Abstract
Collagen gel is widely used in tissue engineering due to excellent biological properties and swollen three-dimensional network structure. To improve viscoelasticity and thermal stability, collagen gels consisting of fibrils were cross-linked with glutaraldehyde and sequentially dehydrated via ethanol or heating (named as EGC or HGC, respectively). For EGC, ethanol replaced free and loosely bound water and then combined with tightly bound water, inducing the increase in hydrogen bonds and molecular interactions. Therefore, the thermal transition temperature (Tt ) and storage modulus (G') obviously increased from 47.3 ± 0.5°C and 0.1 kPa to 92.7 ± 0.8°C and 7.8 kPa, respectively. Unfortunately, the high deformation (γ > 60%) and low recovery percentage (R < 15%) reflected the poor anti-deformation of gels due to the volatility of ethanol. For HGC, the entanglement and rigidity of fibrils increased owing to the contraction of cross-linked fibrils and cohesive action of denatured collagen. As a result, HGC were more resistant to deformation and exhibited more elasticity than native collagen gel, accompanied by the fact that G' and R increased to 28.8 kPa and 90.0% ± 0.7%. Additionally, HGC exhibited higher Tt (121.4 ± 0.5°C) due to lower water content and higher collagen concentration.
Collapse
Affiliation(s)
- Zhenhua Tian
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China.,National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, China.,College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lirui Shen
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Wentao Liu
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| | - Guoying Li
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Duan L, Xiang H, Yang X, Liu L, Tian Z, Tian H, Li J. The influences of 3,4-dihydroxybenzaldehyde on the microstructure and stability of collagen fibrils. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Gao G, Kim BS, Jang J, Cho DW. Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication. ACS Biomater Sci Eng 2019; 5:1150-1169. [PMID: 33405637 DOI: 10.1021/acsbiomaterials.8b00691] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reconstructing human organs is one of the ultimate goals of the medical industry. Organ printing utilizing three-dimensional cell printing technology to fabricate artificial living organ equivalents has shed light on the advancement of this field into a new era. Among three currently applied techniques (inkjet, laser-assisted, and extrusion-based), extrusion-based cell printing (ECP) has evoked the majority of interest due to its low cost, wide range of applicable materials, and ease of spatial and depositional controllability. Major challenges in organ reconstruction include difficulties in precisely fabricating complex structural features, creating perfusable and functional vasculatures, and mimicking biophysical and biochemical characteristics in the printed constructs. In this review, we describe the merits and limitations of ECP for organ fabrication and discuss its recent advances aimed at overcoming these challenges. In addition, we delineate the expected future techniques for printing live tissue or organ substitutes.
Collapse
|
13
|
Abstract
Background The worldwide demand for the organ replacement or tissue regeneration is increasing steadily. The advancements in tissue engineering and regenerative medicine have made it possible to regenerate such damaged organs or tissues into functional organ or tissue with the help of 3D bioprinting. The main component of the 3D bioprinting is the bioink, which is crucial for the development of functional organs or tissue structures. The bioinks used in 3D printing technology require so many properties which are vital and need to be considered during the selection. Combination of different methods and enhancements in properties are required to develop more successful bioinks for the 3D printing of organs or tissue structures. Main body This review consists of the recent state-of-art of polymer-based bioinks used in 3D printing for applications in tissue engineering and regenerative medicine. The subsection projects the basic requirements for the selection of successful bioinks for 3D printing and developing 3D tissues or organ structures using combinations of bioinks such as cells, biomedical polymers and biosignals. Different bioink materials and their properties related to the biocompatibility, printability, mechanical properties, which are recently reported for 3D printing are discussed in detail. Conclusion Many bioinks formulations have been reported from cell-biomaterials based bioinks to cell-based bioinks such as cell aggregates and tissue spheroids for tissue engineering and regenerative medicine applications. Interestingly, more tunable bioinks, which are biocompatible for live cells, printable and mechanically stable after printing are emerging with the help of functional polymeric biomaterials, their modifications and blending of cells and hydrogels. These approaches show the immense potential of these bioinks to produce more complex tissue/organ structures using 3D bioprinting in the future.
Collapse
Affiliation(s)
- Janarthanan Gopinathan
- 1Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu, Seoul, 01811 Republic of Korea.,2Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu Seoul, 01811 Republic of Korea
| | - Insup Noh
- 1Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu, Seoul, 01811 Republic of Korea.,2Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu Seoul, 01811 Republic of Korea
| |
Collapse
|
14
|
Lu M, Song X, Yang M, Kong W, Zhu J. Combined effects of glutaraldehyde and riboflavin/uv365 on the self-assembly of type I collagen molecules observed with atomic force microscopy. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1510837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mengyao Lu
- Laboratory of Agricultural and Food Biomechanics, Institute of Biophysics and College of Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuan Song
- Laboratory of Agricultural and Food Biomechanics, Institute of Biophysics and College of Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Meiling Yang
- Laboratory of Agricultural and Food Biomechanics, Institute of Biophysics and College of Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Weisha Kong
- Laboratory of Agricultural and Food Biomechanics, Institute of Biophysics and College of Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biomechanics, Institute of Biophysics and College of Science, Northwest A&F University, Yangling, Shaanxi, China
- Sino-US Joint Research Center of Food Safety, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Duan L, Yuan Q, Xiang H, Yang X, Liu L, Li J. Fabrication and characterization of a novel collagen-catechol hydrogel. J Biomater Appl 2017; 32:862-870. [DOI: 10.1177/0885328217747125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lian Duan
- College of Textiles and Garments, Southwest University, Chongqing, China
| | - Qijuan Yuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Engineering, Sun Yat-sen University, Guangzhou, China
| | - Hongzhao Xiang
- College of Textiles and Garments, Southwest University, Chongqing, China
| | - Xiao Yang
- College of Textiles and Garments, Southwest University, Chongqing, China
| | - Lindong Liu
- College of Textiles and Garments, Southwest University, Chongqing, China
| | - Jiao Li
- College of Textiles and Garments, Southwest University, Chongqing, China
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Zhang J, Wei B, He L, Xu C, Xie D, Paik KW, Wang H. Systematic modulation of gelation dynamics of snakehead (Channa argus) skin collagen by environmental parameters. Macromol Res 2017. [DOI: 10.1007/s13233-017-5149-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Liao W, Liu Y, Xia G, Shen XR, Duan Z, Yang J. Characterization of three-spot seahorse (Hippocampus trimaculatus
) skin collagen and its fibrillar gel reinforced by EDC: A comparative study. J Food Biochem 2017. [DOI: 10.1111/jfbc.12391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wei Liao
- College of Food Science and Technology, Hainan University; Haikou Hainan China
| | - Yangfeng Liu
- College of Food Science and Technology, Hainan University; Haikou Hainan China
| | - Guanghua Xia
- College of Food Science and Technology, Hainan University; Haikou Hainan China
| | - Xuan Ri Shen
- College of Food Science and Technology, Hainan University; Haikou Hainan China
| | - Zhouwei Duan
- Hainan Academy of Agricultural Sciences; Haikou Hainan China
| | - Jian Yang
- Hainan Longsheng Bio-tech Development CO., Ltd; Haikou Hainan China
| |
Collapse
|
18
|
Reese SP, Farhang N, Poulson R, Parkman G, Weiss JA. Nanoscale Imaging of Collagen Gels with Focused Ion Beam Milling and Scanning Electron Microscopy. Biophys J 2017; 111:1797-1804. [PMID: 27760365 DOI: 10.1016/j.bpj.2016.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/29/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
In vitro polymerized type I collagen hydrogels have been used extensively as a model system for three-dimensional (3D) cell and tissue culture, studies of fibrillogenesis, and investigation of multiscale force transmission within connective tissues. The nanoscale organization of collagen fibrils plays an essential role in the mechanics of these gels and emergent cellular behavior in culture, yet quantifying 3D structure with nanoscale resolution to fully characterize fibril organization remains a significant technical challenge. In this study, we demonstrate that a new imaging modality, focused ion beam scanning electron microscopy (FIB-SEM), can be used to generate 3D image datasets for visualizing and quantifying complex nanoscale organization and morphometry in collagen gels. We polymerized gels at a number of concentrations and conditions commonly used for in vitro models, stained and embedded the samples, and performed FIB-SEM imaging. The resulting image data had a voxel size of 25 nm, which is the highest resolution 3D data of a collagen fibril network ever obtained for collagen gels. This resolution was essential for discerning individual fibrils, fibril paths, and their branching and grouping. The resulting volumetric images revealed that polymerization conditions have a significant impact on the complex fibril morphology of the gels. We segmented the fibril network and demonstrated that individual collagen fibrils can be tracked in 3D space, providing quantitative analysis of network descriptors such as fibril diameter distribution, length, branch points, and fibril aggregations. FIB-SEM 3D reconstructions showed considerably less lateral grouping and overlap of fibrils than standard 2D SEM images, likely due to artifacts in SEM introduced by dehydration. This study demonstrates the utility of FIB-SEM for 3D imaging of collagen gels and quantitative analysis of 3D fibril networks. We anticipate that the method will see application in future studies of structure-function relationships in collagen gels as well as native collagenous tissues.
Collapse
Affiliation(s)
- Shawn P Reese
- Bioengineering, University of Utah, Salt Lake City, Utah
| | | | - Randy Poulson
- Bioengineering, University of Utah, Salt Lake City, Utah
| | - Gennie Parkman
- Bioengineering, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
19
|
Zhao L, Li X, Zhao J, Ma S, Ma X, Fan D, Zhu C, Liu Y. A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: Its characterization and biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:317-326. [DOI: 10.1016/j.msec.2016.05.108] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/23/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
|
20
|
|
21
|
Shen L, Tian Z, Liu W, Li G. Influence on the physicochemical properties of fish collagen gels using self-assembly and simultaneous cross-linking with the N-hydroxysuccinimide adipic acid derivative. Connect Tissue Res 2015; 56:244-52. [PMID: 25689166 DOI: 10.3109/03008207.2015.1020941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Collagen gels from Southern catfish (Silurus meridionalis Chen) skins were prepared via the self-assembly of collagen molecules and simultaneous cross-linking with the N-hydroxysuccinimide adipic acid derivative (NHS-AA). The doses of NHS-AA were converted to [NHS-AA]/[NH2] ratios (0.025-1.6, calculated by the [active ester group] of NHS-AA and [ε-NH2] of lysine and hydroxylysine residues of collagen). When the ratio < 0.05, collagen gels were formed by collagen molecule self-assembly, resulting in the opalescent appearance of collagen gels and the characteristic D-periodicity of partial collagen fibrils, the collagen gel ([NHS-AA]/[NH2] = 0.05) displayed a small increase in denaturation temperature (Td, 42.8 °C), remaining weight (12.59%), specific water content (SWC 233.7) and elastic modulus (G' 128.4 Pa) compared with uncross-linked collagen gel (39.1 °C, 9.12%, 222.4 and 85.4 Pa, respectively). As the ratio > 0.05, disappearance of D-periodicity and a gradual change in appearance from opalescent to transparent suggested that the inhibition of NHS-AA in the self-assembly of collagen molecules was more obvious. As a result, the collagen gel ([NHS-AA]/[NH2] = 0.2) had the lowest Td (35.8 °C), remaining weight (7.96%), SWC (130.9) and G' (31.9 Pa). When the ratio was 1.6, the collagen molecule self-assembly was markedly suppressed and the formation of collagen gel was predominantly via the covalent cross-linking bonds which led to the transparent appearance, and the maximum values of Td (47.0 °C), remaining weight (45.92%) and G' (420.7 Pa) of collagen gel. These results indicated that collagen gels with different properties can be prepared using different NHS-AA doses.
Collapse
Affiliation(s)
- Lirui Shen
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University , Chengdu, PR China and
| | | | | | | |
Collapse
|
22
|
Porous hydrogel of wool keratin prepared by a novel method: An extraction with guanidine/2-mercaptoethanol solution followed by a dialysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:146-54. [DOI: 10.1016/j.msec.2014.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/28/2014] [Accepted: 05/13/2014] [Indexed: 12/27/2022]
|
23
|
Zhao YZ, Lv HF, Lu CT, Chen LJ, Lin M, Zhang M, Jiang X, Shen XT, Jin RR, Cai J, Tian XQ, Wong HL. Evaluation of a novel thermosensitive heparin-poloxamer hydrogel for improving vascular anastomosis quality and safety in a rabbit model. PLoS One 2013; 8:e73178. [PMID: 24015296 PMCID: PMC3755001 DOI: 10.1371/journal.pone.0073178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/17/2013] [Indexed: 01/28/2023] Open
Abstract
Despite progress in the design of advanced surgical techniques, stenosis recurs in a large percentage of vascular anastomosis. In this study, a novel heparin-poloxamer (HP) hydrogel was designed and its effects for improving the quality and safety of vascular anastomosis were studied. HP copolymer was synthesized and its structure was confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H-NMR). Hydrogels containing HP were prepared and their important characteristics related to the application in vascular anastomosis including gelation temperature, rheological behaviour and micromorphology were measured. Vascular anastomosis were performed on the right common carotid arteries of rabbits, and the in vivo efficiency and safety of HP hydrogel to achieve vascular anastomosis was verified and compared with Poloxamer 407 hydrogel and the conventional hand-sewn method using Doppler ultrasound, CT angiograms, scanning electron microscopy (SEM) and histological technique. Our results showed that HP copolymer displayed special gel-sol-gel phase transition behavior with increasing temperature from 5 to 60 °C. HP hydrogel prepared from 18 wt% HP solution had a porous sponge-like structure, with gelation temperature at approximately 38 °C and maximum elastic modulus at 10,000 Pa. In animal studies, imaging and histological examination of rabbit common jugular artery confirmed that HP hydrogel group had similar equivalent patency, flow and burst strength as Poloxamer 407 group. Moreover, HP hydrogel was superior to poloxamer 407 hydrogel and hand-sewn method for restoring the functions and epithelial structure of the broken vessel junctions after operation. By combining the advantages of heparin and poloxamer 407, HP hydrogel holds high promise for improving vascular anastomosis quality and safety.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Hai-Feng Lv
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- * E-mail: (CTL); (XQT); (HLW)
| | - Li-Juan Chen
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Min Lin
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ming Zhang
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xi Jiang
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Tong Shen
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Rong-Rong Jin
- Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Jun Cai
- Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Xin-Qiao Tian
- Department of Ultrasonography, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- * E-mail: (CTL); (XQT); (HLW)
| | - Ho Lun Wong
- School of Pharmacy, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (CTL); (XQT); (HLW)
| |
Collapse
|