1
|
Zhang L, Wan Z, Yuan Z, Yang J, Zhang Y, Cai Q, Huang J, Zhao Y. Construction of multifunctional cell aggregates in angiogenesis and osteogenesis through incorporating hVE-cad-Fc-modified PLGA/β-TCP microparticles for enhancing bone regeneration. J Mater Chem B 2022; 10:3344-3356. [PMID: 35380570 DOI: 10.1039/d2tb00359g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multicellular aggregates have been widely utilized for regenerative medicine; however, the heterogeneous structure and undesired bioactivity of cell-only aggregates hinder their clinical translation. In this study, we fabricated an innovative kind of microparticle-integrated cellular aggregate with multifunctional activities in angiogenesis and osteogenesis, by combining stem cells from human exfoliated deciduous teeth (SHEDs) and bioactive composite microparticles. The poly(lactide-co-glycolide) (PLGA)-based bioactive microparticles (PTV microparticles) were ∼15 μm in diameter, with dispersed β-tricalcium phosphate (β-TCP) nanoparticles and surface-modified vascular endothelialcadherin fusion protein (hVE-cad-Fc). After co-culturing with microparticles in U-bottomed culture plates, SHEDs could firmly attach to the microparticles with a homogeneous distribution. The PTV microparticle-integrated SHED aggregates (PTV/SHED aggregates) showed significant positive CD31 and ALP expression, as well as the significantly upregulated osteogenesis makers (Runx2, ALP, and OCN) and angiogenesis makers (Ang-1 and CD31), compared with PLGA, PLGA/β-TCP (PT) and PLGA/hVE-cad-Fc (PV) microparticle-integrated SHED aggregates. Finally, in mice, 3 mm calvarial defects filled with the PTV microparticle-integrated SHED aggregates achieved abundant vascularized neo-bone regeneration within 4 weeks. Overall, we believe that these multifunctional PTV/SHED aggregates could be used as modules for bottom-up regenerative medicine, and provide a promising method for vascularized bone regeneration.
Collapse
Affiliation(s)
- Linxue Zhang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China.
| | - Zhuo Wan
- State Key Laboratory of Organic-Inorganic Composites & Beijing Laboratory of Biomedical Materials & Beijing University of Chemical Technology, Beijing 100029, PR China. .,Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education & College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites & Beijing Laboratory of Biomedical Materials & Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China.
| |
Collapse
|
2
|
Zhang T, Chen H, Zhou Y, Dong W, Cai H, Tan WS. Cooperation of FGF/MEK/ERK and Wnt/β-catenin pathway regulators to promote the proliferation and pluripotency of mouse embryonic stem cells in serum- and feeder-free conditions. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0249-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
3
|
Fujita K, Nozaki K, Horiuchi N, Yamashita K, Miura H, Nagai A. Regulation of periodontal ligament-derived cells by type III collagen-coated hydroxyapatite. Biomed Mater Eng 2017; 29:15-27. [DOI: 10.3233/bme-171709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kazuhisa Fujita
- Department of Fixed Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kosuke Nozaki
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Naohiro Horiuchi
- Department of Inorganic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kimihiro Yamashita
- Department of Inorganic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Hiroyuki Miura
- Department of Fixed Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Akiko Nagai
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
4
|
Abstract
Reproductive engineering techniques are essential for assisted reproduction of animals
and generation of genetically modified animals. They may also provide invaluable research
models for understanding the mechanisms involved in the developmental and reproductive
processes. At the RIKEN BioResource Center (BRC), I have sought to develop new
reproductive engineering techniques, especially those related to cryopreservation,
microinsemination (sperm injection), nuclear transfer, and generation of new stem cell
lines and animals, hoping that they will support the present and future projects at BRC. I
also want to combine our techniques with genetic and biochemical analyses to solve
important biological questions. We expect that this strategy makes our research more
unique and refined by providing deeper insights into the mechanisms that govern the
reproductive and developmental systems in mammals. To make this strategy more effective,
it is critical to work with experts in different scientific fields. I have enjoyed
collaborations with about 100 world-recognized laboratories, and all our collaborations
have been successful and fruitful. This review summarizes development of reproductive
engineering techniques at BRC during these 15 years.
Collapse
Affiliation(s)
- Atsuo Ogura
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
5
|
Kim WH, Shen H, Jung DW, Williams DR. Some leopards can change their spots: potential repositioning of stem cell reprogramming compounds as anti-cancer agents. Cell Biol Toxicol 2016; 32:157-68. [DOI: 10.1007/s10565-016-9333-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/28/2016] [Indexed: 01/14/2023]
|