1
|
Zulfajri M, Gedda G, Ulla H, Habibati, Gollavelli G, Huang GG. A review on the chemical and biological sensing applications of silver/carbon dots nanocomposites with their interaction mechanisms. Adv Colloid Interface Sci 2024; 325:103115. [PMID: 38422725 DOI: 10.1016/j.cis.2024.103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The development of new nanocomposites has a significant impact on modern instrumentation and analytical methods for chemical analysis. Due to their unique properties, carbon dots (CDs) and silver nanoparticles (AgNPs), distinguished by their unique physical, electrochemical, and optical properties, have captivated significant attention. Thus, combining AgNPs and CDs may produce Ag/CDs nanocomposites with improved performances than the individual material. This comprehensive review offers an in-depth exploration of the synthesis, formation mechanism, properties, and the recent surge in chemical and biological sensing applications of Ag/CDs with their sensing mechanisms. Detailed insights into synthesis methods to produce Ag/CDs are unveiled, followed by information on their physicochemical and optical properties. The crux of this review lies in its spotlight on the diverse landscape of chemical and biological sensing applications of Ag/CDs, with a particular focus on fluorescence, electrochemical, colorimetric, surface-enhanced Raman spectroscopy, and surface plasmon resonance sensing techniques. The elucidation of sensing mechanisms of the nanocomposites with various target analytes adds depth to the discussion. Finally, this review culminates with a concise summary and a glimpse into future perspectives of Ag/CDs aiming to achieve highly efficient and enduring Ag/CDs for various applications.
Collapse
Affiliation(s)
- Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Aceh 23245, Indonesia
| | - Gangaraju Gedda
- Central Research Laboratory, K S Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India.; Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| | - Hidayath Ulla
- Department of Physics, School of Engineering, Presidency University, Bangalore 560064, India; Innovation and Translational Research Hub (iTRH), Presidency University, Bangalore 560064, Karnataka, India
| | - Habibati
- Department of Chemistry Education, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
| | - Ganesh Gollavelli
- Department of Humanities and Basic Science, Aditya Engineering College, Jawaharlal Nehru Technological University Kakinada, Kakinada 533437, India
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
2
|
Hamouda T, Kafafy H, Mashaly HM, Aly NM. Breathability performance of antiviral cloth masks treated with silver nanoparticles for protection against COVID-19. JOURNAL OF INDUSTRIAL TEXTILES 2022; 51:1494-1523. [PMID: 35923723 PMCID: PMC8914303 DOI: 10.1177/15280837211051100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The global widespread of coronavirus disease 2019 (COVID-19) has caused shortage of medical face masks and led to developing of various types of cloth masks with different levels of protection and comfort to meet the market demands. Breathing comfort is a significant aspect that should be considered during the design of cloth masks along with the filtration efficiency; otherwise, the wearer will feel suffocated. In this work, different types of cotton and polyester knitted fabrics blended with spandex yarns were produced and treated with silver nanoparticles to be used as antiviral cloth masks. Scanning electron microscope, transmission electron microscope, and EDX were used to characterize the silver nanoparticles (AgNPs). Antiviral activity was assessed against SARS-CoV-2 coronavirus as well. The influence of using different fabric materials, number of layers, and hybrid layers on their air permeability and breathability were investigated to evaluate the comfortability of the cloth masks. Physiological impacts of wearing the cloth masks were evaluated by measuring oxygen saturation of hemoglobin and heart rate of the wearers while doing various activities. The results indicated that AgNPs have low cytotoxicity and considerable efficiency in inhibition of SARS-CoV-2. Adding spandex yarns with different count and ratios reduced the porosity and air permeability of the fabrics. Moreover, the combination of three hybrid layers' mask made of polyester fabric in the outer layer with 100% cotton fabric in the inner layer showed high comfortability associated with high air permeability and breathability. Also, wearing these masks while doing activities showed no significant effect on blood oxygen saturation and heart rate of the wearers.
Collapse
Affiliation(s)
- Tamer Hamouda
- Spinning and Weaving Engineering Department, Textile Industries Research Division, National Research Centre, Cairo, Egypt
| | - Hany Kafafy
- Dyeing, Printing and Auxiliaries Department, Textile Industries Research Division, National Research Centre, Cairo, Egypt
| | - HM Mashaly
- Dyeing, Printing and Auxiliaries Department, Textile Industries Research Division, National Research Centre, Cairo, Egypt
| | - Nermin M Aly
- Spinning and Weaving Engineering Department, Textile Industries Research Division, National Research Centre, Cairo, Egypt
- Nermin M Aly,Spinning and Weaving Engineering Department, Textile Industries Research Division, National Research Centre, 33 El Bohouth St., Dokki, Cairo12622, Egypt.
| |
Collapse
|
3
|
Enhancement of multifunctional properties of leather surface decorated with silver nanoparticles (Ag NPs). J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Marciniak L, Nowak M, Trojanowska A, Tylkowski B, Jastrzab R. The Effect of pH on the Size of Silver Nanoparticles Obtained in the Reduction Reaction with Citric and Malic Acids. MATERIALS 2020; 13:ma13235444. [PMID: 33260479 PMCID: PMC7730334 DOI: 10.3390/ma13235444] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022]
Abstract
In colloidal methods, the morphology of nanoparticles (size and shape) as well as their stability can be controlled by changing the concentration of the substrate, stabilizer, adding inorganic salts, changing the reducer/substrate molar ratio, and changing the pH and reaction time. The synthesis of silver nanoparticles was carried out according to the modified Lee and Meisel method in a wide pH range (from 2.0 to 11.0) using citric acid and malic acid, without adding any additives or stabilizers. Keeping the same reaction conditions as the concentration of acid and silver ions, temperature, and heating time, it was possible to determine the relationship between the reaction pH, the type of acid, and the size of the silver nanoparticles formed. Obtained colloids were analyzed by UV-Vis spectroscopy and investigated by means of Transmission Electron Microscope (TEM). The study showed that the colloids reduced with citric acid and malic acid are stable over time for a minimum of seven weeks. We observed that reactions occurred for citric acid from pH 6.0 to 11.0 and for malic acid from pH 7.0 to 11.0. The average size of the quasi-spherical nanoparticles changed with pH due to the increase of reaction rate.
Collapse
Affiliation(s)
- Lukasz Marciniak
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland; (L.M.); (M.N.)
| | - Martyna Nowak
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland; (L.M.); (M.N.)
| | - Anna Trojanowska
- Centre Tecnològic de Catalunya, Chemical Technologies Unit, Eurecat, 43007 Tarragona, Spain; (A.T.); (B.T.)
| | - Bartosz Tylkowski
- Centre Tecnològic de Catalunya, Chemical Technologies Unit, Eurecat, 43007 Tarragona, Spain; (A.T.); (B.T.)
| | - Renata Jastrzab
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland; (L.M.); (M.N.)
- Correspondence: ; Tel.: +48-6‐9328‐8787
| |
Collapse
|
5
|
Lim JK, Liu T, Jeong J, Shin H, Jang HJ, Cho SP, Park JS. In situ syntheses of silver nanoparticles inside silver citrate nanorods via catalytic nanoconfinement effect. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM, Durazzo A, Santini A, Garcia ML, Souto EB. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E292. [PMID: 32050443 PMCID: PMC7075170 DOI: 10.3390/nano10020292] [Citation(s) in RCA: 582] [Impact Index Per Article: 116.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Daniela Gomes
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
| | - Ana Laura Lopez-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Ruth Galindo
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Maria L. Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Eliana B. Souto
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Wu S, Hui KS, Hui KN, Yun JM, Kim KH. Silver particle-loaded nickel oxide nanosheet arrays on nickel foam as advanced binder-free electrodes for aqueous asymmetric supercapacitors. RSC Adv 2017. [DOI: 10.1039/c7ra06252d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ag particle-loaded NiO nanosheet arrays promise rapid ion and electron transport, large electroactive surface area, and great structural stability.
Collapse
Affiliation(s)
- Shuxing Wu
- School of Materials Science and Engineering
- Pusan National University
- Busan 609-735
- Republic of Korea
| | - Kwan San Hui
- School of Mathematics
- University of East Anglia
- Norwich NR4 7TJ
- UK
| | - Kwun Nam Hui
- Institute of Applied Physics and Materials Engineering
- University of Macau
- Avenida da Universidade
- Taipa
- China
| | - Je Moon Yun
- Global Frontier R&D Center for Hybrid Interface Materials
- Pusan National University
- Busan 609-735
- South Korea
| | - Kwang Ho Kim
- School of Materials Science and Engineering
- Pusan National University
- Busan 609-735
- Republic of Korea
- Global Frontier R&D Center for Hybrid Interface Materials
| |
Collapse
|
8
|
Lombardo PC, Poli AL, Castro LF, Perussi JR, Schmitt CC. Photochemical Deposition of Silver Nanoparticles on Clays and Exploring Their Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21640-21647. [PMID: 27487246 DOI: 10.1021/acsami.6b05292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photochemical method was used to synthesize silver nanoparticles (AgNPs) in the presence of citrate or clay (SWy-1, SYn-1, and Laponite B) as stabilizers and Lucirin TPO as photoinitiator. During the photochemical synthesis, an appearance of the plasmon absorption band was seen around 400 nm, indicating the formation of AgNPs. X-ray diffraction results suggested that AgNPs prepared in SWy-1 were adsorbed into interlamellar space, and moreover, showed some clay exfoliation. In the case of SYn-1, AgNPs was not intercalated. For the AgNP/Lap B sample, the formation of an exfoliated structure occurred. Transmission electron microscopy revealed the spherical shape of AgNPs for all samples. The particle sizes obtained for AgNP/SWy-1, AgNP/SYn-1, and AgNP/Lap B were 2.6, 5.1, and 3.8 nm, respectively. AgNPs adsorbed on SYn-1 reveal nonuniform size and aggregation of some particles. However, AgNP/SWy-1 and AgNP/Lap B samples are more uniform and have diameters smaller than those prepared with SYn-1. This behavior is due to the ability to exfoliate these clays. The antibacterial activities of pure clays, AgNP/citrate, and AgNP/clays were investigated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). AgNPs in the presence of clays (AgNPs/SYn-1 and AgNPs/SWy-1) showed a lower survival index percentage compared to those obtained for pure clays and AgNPs. The AgNP/SWy-1 sample showed good antibacterial activity against both tested species and the lowest survival index of 3.9 and 4.3 against E. coli and S. aureus, respectively. AgNPs are located in the interlayer region of the SWy-1, which has acid sites. These acidic sites may contribute to the release of Ag(+) ions from the surface of AgNPs. On the other hand, Laponite B and AgNP/Lap B samples did not demonstrate any bactericidal activity.
Collapse
Affiliation(s)
- Patrícia C Lombardo
- Instituto de Química de São Carlos, Universidade de São Paulo , Caixa Postal 780, 13560-970 São Carlos SP, Brazil
| | - Alessandra L Poli
- Instituto de Química de São Carlos, Universidade de São Paulo , Caixa Postal 780, 13560-970 São Carlos SP, Brazil
| | - Lucas F Castro
- Instituto de Química de São Carlos, Universidade de São Paulo , Caixa Postal 780, 13560-970 São Carlos SP, Brazil
| | - Janice R Perussi
- Instituto de Química de São Carlos, Universidade de São Paulo , Caixa Postal 780, 13560-970 São Carlos SP, Brazil
| | - Carla C Schmitt
- Instituto de Química de São Carlos, Universidade de São Paulo , Caixa Postal 780, 13560-970 São Carlos SP, Brazil
| |
Collapse
|
9
|
Reverberi AP, Kuznetsov NT, Meshalkin VP, Salerno M, Fabiano B. Systematical analysis of chemical methods in metal nanoparticles synthesis. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2016. [DOI: 10.1134/s0040579516010127] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Chadha R, Sharma R, Maiti N, Ballal A, Kapoor S. Effect of SDS concentration on colloidal suspensions of Ag and Au nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:664-70. [PMID: 26093116 DOI: 10.1016/j.saa.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/22/2014] [Accepted: 06/01/2015] [Indexed: 05/26/2023]
Abstract
We present a kinetic study of the effects of sodium dodecyl sulfate (SDS) concentration on reduction and aggregation of Ag(+) and Au(3+) ions in aqueous solutions. There are distinct differences between the surface plasmon absorption bands of Ag nanoparticles at different concentrations of SDS. The results reveal the existence of two competing SDS-induced processes: stabilization of the Ag nanoparticles due to adsorption and aggregation of the Ag nanoparticles due to increase in ionic strength. However, SDS induced aggregation of Au nanoparticles is negligible because of less surface passivity as evident from eaq(-) reaction with AuCl4(-). Nevertheless, the average size of the Ag and Au nanoparticles remains almost similar at all SDS concentrations. UV-Vis spectrophotometry and transmission electron microscopy are used to characterize the nanoparticles. Moreover, it is shown that these SDS-capped Ag, Au and Au/Ag bimetallic nanoparticles could function as catalysts for the reduction of o-nitro aniline in the presence of NaBH4.
Collapse
Affiliation(s)
- Ridhima Chadha
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Rajeshwar Sharma
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Nandita Maiti
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sudhir Kapoor
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| |
Collapse
|