1
|
Ghahremanzadeh F, Alihosseini F, Semnani D. Investigation and comparison of new galactosylation methods on PCL/chitosan scaffolds for enhanced liver tissue engineering. Int J Biol Macromol 2021; 174:278-288. [PMID: 33524484 DOI: 10.1016/j.ijbiomac.2021.01.158] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/24/2022]
Abstract
In liver tissue engineering, improving the ability of the scaffold to increase the tendency of cells to grow and proliferate is very important. In this study, new methods for modifying the surface of Polycaprolactone (PCL)/Chitosan (Cs) nanofiber for use in liver tissue engineering have been proposed. Galactosylation of chitosan was performed in three ways. According to the FE-SEM, FTIR, NMR and DSC analysis, presence of galactose in uniform nanofibers confirmed and led to a decrease in crystallinity. The hydrophobicity of the scaffolds by contact angle showed that the scaffold with galactosylated after electrospinning, had the highest contact angle of 82.22 ± 2° compared to raw scaffold with 98.52 ± 4°. According to the results of degradation in PBS, the highest rate of degradation was observed in scaffolds that were galactosylated after electrospinning. By culturing HepG2 cells on and based on the results of SEM and MTT analysis, found that the presence of galactose in the scaffolds significantly increased cell growth and proliferation without any toxicity. The immersion method shows a greater ability to improve the growth of liver cells. Also, using in-situ way due to the roughness created in this method may lead to better results especially for in-vivo tests.
Collapse
Affiliation(s)
- Fatemeh Ghahremanzadeh
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farzaneh Alihosseini
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Dariush Semnani
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
2
|
da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020; 9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Liver diseases contribute markedly to the global burden of mortality and disease. The limited organ disposal for orthotopic liver transplantation results in a continuing need for alternative strategies. Over the past years, important progress has been made in the field of tissue engineering (TE). Many of the early trials to improve the development of an engineered tissue construct are based on seeding cells onto biomaterial scaffolds. Nowadays, several TE approaches have been developed and are applied to one vital organ: the liver. Essential elements must be considered in liver TE-cells and culturing systems, bioactive agents or growth factors (GF), and biomaterials and processing methods. The potential of hepatocytes, mesenchymal stem cells, and others as cell sources is demonstrated. They need engineered biomaterial-based scaffolds with perfect biocompatibility and bioactivity to support cell proliferation and hepatic differentiation as well as allowing extracellular matrix deposition and vascularization. Moreover, they require a microenvironment provided using conventional or advanced processing technologies in order to supply oxygen, nutrients, and GF. Herein the biomaterials and the conventional and advanced processing technologies, including cell-sheets process, 3D bioprinting, and microfluidic systems, as well as the future trends in these major fields are discussed.
Collapse
Affiliation(s)
- Alain da Silva Morais
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Sílvia Vieira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Joaquim M. Oliveira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
3
|
da Silva Morais A, Oliveira JM, Reis RL. Biomaterials and Microfluidics for Liver Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:65-86. [DOI: 10.1007/978-3-030-36588-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Sodium butyrate improves memory and modulates the activity of histone deacetylases in aged rats after the administration of d-galactose. Exp Gerontol 2018; 113:209-217. [DOI: 10.1016/j.exger.2018.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/01/2018] [Accepted: 10/04/2018] [Indexed: 01/31/2023]
|
5
|
Alonso S. Exploiting the bioengineering versatility of lactobionic acid in targeted nanosystems and biomaterials. J Control Release 2018; 287:216-234. [DOI: 10.1016/j.jconrel.2018.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022]
|
6
|
Perez RA, Jung CR, Kim HW. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue. Adv Healthc Mater 2017; 6. [PMID: 27860372 DOI: 10.1002/adhm.201600791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/10/2016] [Indexed: 12/18/2022]
Abstract
Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies.
Collapse
Affiliation(s)
- Roman A. Perez
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Regenerative Medicine Research Institute; Universitat Internacional de Catalunya; Barcelona 08017 Spain
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; KRIBB; 125 Gwahak-ro Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN); Dankook University; Cheonan 330-714 Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine; Dankook University; Cheonan 330-714 Republic of Korea
- Department of Biomaterials Science; Dankook University Dental College; Cheonan 330-714 Republic of Korea
| |
Collapse
|
7
|
Liu MJ, Qu D, Chen Y, Liu CY, Liu YP, Ding XF. Preparation of novel butyryl galactose ester-modified coix component microemulsions and evaluation on hepatoma-targeting in vitro and in vivo. Drug Deliv 2016; 23:3444-3451. [PMID: 27198659 DOI: 10.1080/10717544.2016.1189984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The butyryl galactose ester-modified coix component microemulsions (But-Gal-CMEs) was developed for enhanced liver tumor-specific targeting. The study was aimed to evaluate the hepatoma-targeting potential of But-Gal-CMEs in vitro and in vivo. But-Gal-CMEs with a uniform spherical shape exhibited a small particle size (56.68 ± 0.07 nm), a narrow polydispersity (PDI, 0.144 ± 0.005) and slightly negative surface charge (-0.102 ± 0.008 mV). In the cell uptake studies, But-Gal-CMEs showed a significant enhancement on the intracellular fluorescent intensity on HepG2 cells model, which was 1.93-fold higher relative to coix component microemulsions (CMEs). The IC50 of But-Gal-CMEs against HepG2 cells was 64.250 μg/mL, which was notably stronger than that of CMEs. In the cell apoptosis studies, compared with CMEs, But-Gal-CMEs (50 μg/mL) treatment resulted in a 1.34-fold rise in total apoptosis cells of HepG2. In the biodistribution studies in vivo, the intratumorous fluorescence of Cy5-loaded But-Gal-CMEs was 1.43-fold higher relative to that of Cy5-loaded CMEs, suggesting an obviously enhanced accumulation in the tumor sites. Taken as together, But-Gal could be incorporated into the coix component microemulsions as a novel ligand for realizing hepatoma-targeting drugs delivery.
Collapse
Affiliation(s)
- Ming Jian Liu
- a Multicomponent of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Provincial Academy of Chinese Medicine , Nanjing , China and.,b Department of Pharmacy , Jiangsu University , Zhen Jiang , China
| | - Ding Qu
- a Multicomponent of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Provincial Academy of Chinese Medicine , Nanjing , China and
| | - Yan Chen
- a Multicomponent of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Provincial Academy of Chinese Medicine , Nanjing , China and
| | - Cong Yan Liu
- a Multicomponent of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Provincial Academy of Chinese Medicine , Nanjing , China and
| | - Yu Ping Liu
- a Multicomponent of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Provincial Academy of Chinese Medicine , Nanjing , China and
| | - Xue Fang Ding
- a Multicomponent of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Provincial Academy of Chinese Medicine , Nanjing , China and
| |
Collapse
|
8
|
Zhang Y, Wang QS, Yan K, Qi Y, Wang GF, Cui YL. Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications. J Biomed Mater Res A 2016; 104:1863-70. [DOI: 10.1002/jbm.a.35717] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/22/2016] [Accepted: 03/11/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin 300193 People's Republic of China
| | - Qiang-Song Wang
- Tianjin Key Laboratory of Biomedical Materials; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College; Tianjin 300192 People's Republic of China
| | - Kuo Yan
- Tianjin State Key Laboratory of Modern Chinese Medicine; Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin 300193 People's Republic of China
| | - Yun Qi
- Faculty of Environmental Science and Engineering; Tianjin University; Tianjin 300072 People's Republic of China
| | - Gui-Fang Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin 300193 People's Republic of China
| | - Yuan-Lu Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine; Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin 300193 People's Republic of China
| |
Collapse
|
9
|
Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal MJ, Nadjmi N, Khojasteh A. Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater 2015; 105:431-459. [PMID: 26496456 DOI: 10.1002/jbm.b.33547] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 09/06/2015] [Accepted: 09/27/2015] [Indexed: 12/16/2022]
Abstract
The tissue engineering scaffold acts as an extracellular matrix that interacts to the cells prior to forming new tissues. The chemical and structural characteristics of scaffolds are major concerns in fabricating of ideal three-dimensional structure for tissue engineering applications. The polymer scaffolds used for tissue engineering should possess proper architecture and mechanical properties in addition to supporting cell adhesion, proliferation, and differentiation. Much research has been done on the topic of polymeric scaffold properties such as surface topographic features (roughness and hydrophilicity) and scaffold microstructures (pore size, porosity, pore interconnectivity, and pore and fiber architectures) that influence the cell-scaffold interactions. In this review, efforts were given to evaluate the effect of both chemical and structural characteristics of scaffolds on cell behaviors such as adhesion, proliferation, migration, and differentiation. This review would provide the fundamental information which would be beneficial for scaffold design in future. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 431-459, 2017.
Collapse
Affiliation(s)
- Maissa Jafari
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahrasadat Paknejad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Oral and Maxillofacial Surgery, University of Antwerp, Belgium, Antwerp, Belgium
| | - Saeed Reza Motamedian
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Eghbal
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Nadjmi
- Department of Oral and Maxillofacial Surgery, University of Antwerp, Belgium, Antwerp, Belgium
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|