1
|
Wang R, Shi M, Xu F, Qiu Y, Zhang P, Shen K, Zhao Q, Yu J, Zhang Y. Graphdiyne-modified TiO 2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat Commun 2020; 11:4465. [PMID: 32901012 PMCID: PMC7479592 DOI: 10.1038/s41467-020-18267-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/07/2020] [Indexed: 02/03/2023] Open
Abstract
Titanium implants have been widely used in bone tissue engineering for decades. However, orthopedic implant-associated infections increase the risk of implant failure and even lead to amputation in severe cases. Although TiO2 has photocatalytic activity to produce reactive oxygen species (ROS), the recombination of generated electrons and holes limits its antibacterial ability. Here, we describe a graphdiyne (GDY) composite TiO2 nanofiber that combats implant infections through enhanced photocatalysis and prolonged antibacterial ability. In addition, GDY-modified TiO2 nanofibers exert superior biocompatibility and osteoinductive abilities for cell adhesion and differentiation, thus contributing to the bone tissue regeneration process in drug-resistant bacteria-induced implant infection.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, PR China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Feiyan Xu
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, 528200, Foshan, PR China
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, 430070, Wuhan, PR China
| | - Yun Qiu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Peng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Kailun Shen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Qin Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Jiaguo Yu
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, 528200, Foshan, PR China.
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, 430070, Wuhan, PR China.
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China.
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, PR China.
| |
Collapse
|
2
|
de Lima Nascimento TR, de Amoêdo Campos Velo MM, Silva CF, Costa Cruz SBS, Gondim BLC, Mondelli RFL, Castellano LRC. Current Applications of Biopolymer-based Scaffolds and Nanofibers as Drug Delivery Systems. Curr Pharm Des 2019; 25:3997-4012. [PMID: 31701845 DOI: 10.2174/1381612825666191108162948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high surface-to-volume ratio of polymeric nanofibers makes them an effective vehicle for the release of bioactive molecules and compounds such as growth factors, drugs, herbal extracts and gene sequences. Synthetic polymers are commonly used as sensors, reinforcements and energy storage, whereas natural polymers are more prone to mimicking an extracellular matrix. Natural polymers are a renewable resource and classified as an environmentally friendly material, which might be used in different techniques to produce nanofibers for biomedical applications such as tissue engineering, implantable medical devices, antimicrobial barriers and wound dressings, among others. This review sheds some light on the advantages of natural over synthetic polymeric materials for nanofiber production. Also, the most important techniques employed to produce natural nanofibers are presented. Moreover, some pieces of evidence regarding toxicology and cell-interactions using natural nanofibers are discussed. Clearly, the potential extrapolation of such laboratory results into human health application should be addressed cautiously.
Collapse
Affiliation(s)
- Tatiana Rita de Lima Nascimento
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | | | - Camila Félix Silva
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Sara Brito Silva Costa Cruz
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - Brenna Louise Cavalcanti Gondim
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil.,Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraíba, Campina Grande, PB, Brazil
| | - Rafael Francisco Lia Mondelli
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of Sao Paulo, SP, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group (GEPIH), Technical School of Health of UFPB, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| |
Collapse
|
3
|
Javadi A, Solouk A, Haghbin Nazarpak M, Bagheri F. Surface engineering of titanium-based implants using electrospraying and dip coating methods. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:620-630. [PMID: 30889737 DOI: 10.1016/j.msec.2019.01.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
Abstract
Titanium and its alloys due to their low density, good mechanical and biological properties are of the most common orthopedic metals. One of the main challenges regarding to titanium implants is their loosening after long term implantation in patient's body. Many methods such as alteration in surface topography with focus on improving osseointegration or biocompatibility in overall are supposed to overcome this issue. In this research, titanium surface topography is altered via electrospraying a solution of titanium salt, carrier polymer (polyvinylpyrrolidone) and solvents. The dip coated samples in the same solution are prepared and investigated as control. The electrosprayed or dip coated samples were pyrolysised in furnace at 500 °C to remove polymeric components. Then the stabilized microstructures on the surfaces were evaluated via scanning electron microscopy (SEM), water contact angle (WCA) measurement, X-ray diffraction (XRD) and atomic force microscope (AFM). Also, in order to study the bioactivity of modified samples, they were immersed in simulated body fluid (SBF) and their precipitates were studied. The cellular investigations were done by studying the cell morphology, MTT and alkaline phosphatase (ALP) activity assays. The results showed improvement in bioactivity and cellular response for DP3 and SP15 more than other samples implying the promising potential of these two approaches for titanium implant surface modification.
Collapse
Affiliation(s)
- Akbar Javadi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center (NTRC), Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|