1
|
Aharoni S, Rittel D, Shemtov-Yona K. Factual observations of dynamic bone crushing. Sci Rep 2024; 14:25597. [PMID: 39462125 PMCID: PMC11513972 DOI: 10.1038/s41598-024-77717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/24/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic bone-crushing, exemplified by the pig bone rib, is characterized thermo-mechanically in relation to the bone's microstructural characteristics. The cortical bone's dominant role consists of shielding the trabecular component by resisting deformation, sustaining high load levels, and ultimately cracking. Here we present a qualitative factual study to show that this behavior is the absolute opposite of its quasi-static counterpart in which the trabecular bone was found to play the dominant role. Using infrared thermography, we observed for the first time a significant localized temperature rise of up to 11 degrees Celsius in both cortical and trabecular damaging regions. Such observations call for additional clinically oriented research. Such a high contrast between static and dynamic failure mechanisms was not reported previously, and it paves the way for forensic-oriented studies in which the nature of the sustained load must be determined.
Collapse
Affiliation(s)
- Sagi Aharoni
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Daniel Rittel
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Keren Shemtov-Yona
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Tuncer C, Güden M, Orhan M, Sarıkaya MK, Taşdemirci A. Quasi-static and dynamic Brazilian testing and failure analysis of a deer antler in the transverse to the osteon growth direction. J Mech Behav Biomed Mater 2023; 138:105648. [PMID: 36610280 DOI: 10.1016/j.jmbbm.2023.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
The transverse tensile strength of a naturally fallen red deer antler (Cervus Elaphus) was determined through indirect Brazilian tests using dry disc-shape specimens at quasi-static and high strain rates. Dynamic Brazilian tests were performed in a compression Split-Hopkinson Pressure Bar. Quasi-static tensile and indirect Brazilian tests were also performed along the osteon growth direction for comparison. The quasi-static transverse tensile strength ranged 31.5-44.5 MPa. The strength increased to 83 MPa on the average in the dynamic Brazilian tests, proving a rate sensitive transverse strength. The quasi-static tensile strength in the osteon growth direction was however found comparably higher, 192 MPa. A Weibull analysis indicated a higher tensile ductility in the osteon growth direction than in the transverse to the osteon growth direction. The microscopic analysis of the quasi-static Brazilian test specimens (tensile strain along the osteon growth direction) revealed a micro-cracking mechanism operating by the crack deflection/twisting at the lacunae in the concentric lamellae region and at the interface between concentric lamellae and interstitial lamellae. On the other side, the specimens in the transverse direction fractured in a more brittle manner by the separation/delamination of the concentric lamellae and pulling of the interstitial lamellae. The detected increase in the transverse strength in the high strain rate tests was further ascribed to the pull and fracture of the visco-plastic collagen fibers in the interstitial lamellae. This was also confirmed microscopically; the dynamically tested specimens exhibited flatter fracture surfaces.
Collapse
Affiliation(s)
- Can Tuncer
- Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey
| | - Mustafa Güden
- Department of Mechanical Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Mehmet Orhan
- Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Denizli, Turkey.
| | - Mustafa Kemal Sarıkaya
- Department of Mechanical Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Alper Taşdemirci
- Department of Mechanical Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| |
Collapse
|
3
|
Then C, Nelson K, Vogl TJ, Roth KE. Computational ballistic analysis of the cranial shot to John F. Kennedy. Forensic Sci Int 2022; 334:111264. [PMID: 35305439 DOI: 10.1016/j.forsciint.2022.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/12/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
Almost 60 years after the assassination of President John F. Kennedy in 1963, the majority of Americans are still reluctant to believe official reports presented by the commissions gathered in 1964 and again in 1976 that determined the direction of the shot resulting in the fatal head injury. Long-withheld, confidential government files released in 2017 reignited the controversy. The present investigation computationally simulated projectile-skull-impacts from the direction specified in official reports and from three other directions. Detailed geometric models of the human head and ammunition, as well as known parameters from the assassination site served as the supportive base for analysis. Constitutive mathematical models for the impact of projectile material with skull tissues at supersonic speed were employed to analyze bone and bullet fragmentation mechanics. Simulated fracture characteristics of bone and bullet were compared with photographic and X-ray evidence. The most likely origin of the fatal shot was determined based on the degree of corresponding deformation and fragmentation between simulation and documented evidence. Computational corroboration could be established as physically consistent with high-speed impact from the rear, as established by the official commissions. Simulations of three other speculative shot origins did not correspond with the documented evidence.
Collapse
Affiliation(s)
- C Then
- Center of Biomedical Engineering CBME, Frankfurt/M., Germany.
| | - K Nelson
- Department of Vascular and Endovascular Surgery, Goethe University Hospital, Frankfurt/M., Germany
| | - T J Vogl
- Center of Biomedical Engineering CBME, Frankfurt/M., Germany; Department of Diagnostic and Interventional Radiology, Goethe University Hospital, Frankfurt/M., Germany
| | - K E Roth
- Center of Orthopedic Surgery, Hochheim, Germany
| |
Collapse
|
4
|
Uniyal P, Sihota P, Kumar N. Effect of organic matrix alteration on strain rate dependent mechanical behaviour of cortical bone. J Mech Behav Biomed Mater 2021; 125:104910. [PMID: 34700105 DOI: 10.1016/j.jmbbm.2021.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
The organic matrix phase of bone plays important role in its mechanical performance, especially in the post-yield regime. Also, the organic phase influences loading rate-dependent behaviour of bone which is relevant during the high-speed loading events. Many diseases, as well as aging, affect the matrix phase of bone which causes compromised mechanical properties. Improved understanding of alterations in the organic matrix phase on mechanical response of bone will be helpful in the mitigation of fractures associated with inferior matrix quality. In the present work, effect of alteration in organic matrix of cortical bone on its strain-rate dependent behaviour was investigated. To produce different amounts of collagen denaturation, bovine cortical bones were heated at the temperature of 180 °C and 240 °C. Further, compression testing was performed at quasi-static strain rates of 10-4 s-1 to 10-2 s-1 using a conventional testing machine whereas a modified Split Hopkinson Pressure Bar (SHPB) was used for high strain rate (∼103) testing. Thermal treatment-induced changes in the mineral and organic phases of bone were assessed using X-ray diffraction (XRD) and Fourier-transform infrared-attenuated total reflection (FTIR-ATR) techniques respectively. Compression test results show that thermal treatment of bone up to 180 °C did not affect mechanical properties significantly whereas treating at 240 °C significantly reduced elastic modulus, failure stress and failure strain. Also, thermal denaturation of collagen reduced the strain rate sensitivity of cortical bone at high strain rates. Similar to the compression test observations, nanoindentation results show a significant reduction in elastic modulus and hardness of denatured samples. Further, FTIR results revealed that with the heat treatment of bone, collagen structure undergoes conformational changes at the molecular level. The initial helix structure breakdowns into unordered/random coil structures which subsequently reduced the mechanical competence of bone. The present study provides insight into the effect of organic matrix modification on mechanical behaviour of cortical bone which could be helpful in understanding bone disorders associated with organic matrix phase and development of therapeutic interventions.
Collapse
Affiliation(s)
- Piyush Uniyal
- Department for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Navin Kumar
- Department for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India; Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, India.
| |
Collapse
|
5
|
Jearanaisilawong P, Jongpairojcosit N, Glunrawd C. Dynamic behaviors and protection mechanisms of sulcata tortoise carapace. Comput Methods Biomech Biomed Engin 2021; 24:1450-1462. [PMID: 33661036 DOI: 10.1080/10255842.2021.1892661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This paper presents the compressive behavior of tortoise carapace at high strain rates and its protection mechanisms under impact loading. Both experimental and numerical results are reported. Tortoise is a land-based desert-dwelling animal taxonomically classified in the order of Testudines. The carapace is the dome-shaped upper part of the tortoise shell that protects its body from predator attacks. The carapace structure is composed of four layers formed as a composite structure with a porous core. The outer surface is keratin scutes made of fibrous structural proteins. The remaining layers are bone-like materials which are dorsal cortex, cancellous interior and ventral cortex. The compressive behavior at high rate of deformation is examined using split Hopkinson pressure bar (SHPB) technique. The results shown in the stress-strain plot illustrate a strain-rate hardening effect. The impact test is conducted using a gas gun with 6.35-mm diameter steel bearing balls as projectiles. The responses of carapace sample under a range of impact velocities are investigated to analyze its protection mechanisms. The numerical model of impact test is created to obtain an insight into mechanical behaviors of the carapace structure that cannot be observed in the experiments. The strain rate dependent material model is defined based on the SHPB test results. The distributions of stress and rebound velocity are presented and discussed.
Collapse
Affiliation(s)
- P Jearanaisilawong
- Faculty of Engineering, Department of Mechanical and Aerospace Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - N Jongpairojcosit
- Ministry of Defence, Office of the Permanent Secretary of Defence (Chaengwattana), Defence Technology Institute, Nonthaburi, Thailand
| | - C Glunrawd
- The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
6
|
Brown AD, Rafaels KA, Weerasooriya T. Shear behavior of human skull bones. J Mech Behav Biomed Mater 2021; 116:104343. [PMID: 33513459 DOI: 10.1016/j.jmbbm.2021.104343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/16/2020] [Accepted: 01/16/2021] [Indexed: 11/25/2022]
Abstract
A shear-punch test (SPT) experimental method was developed to address the lack of shear deformation and failure response data for the human skull as a function of local bone microarchitecture. Improved understanding of skull deformation and fracture under varying stress-states helps implement mechanism-based, multi-axial material models for finite element analysis for optimizing protection strategies. Shear-punch coupons (N = 47 specimens) were extracted from right-parietal and frontal bones of three fresh-frozen-thawed human skulls. The specimens were kept as full through-thickness or segmented into the three skull constituent layers: the inner and outer cortical tables and the middle porous diploë. Micro-computed x-ray tomography (μCT) before and after SPT provided the bone volume fraction (BVF) as a function of depth for correlation to shear mechanisms in the punched volumes. Digital image correlation was used to track displacement of the punch above the upper die to minimize compliance error. Five full-thickness specimens were subjected to partial indentation loading to investigate the process of damage development as a function of BVF and depth. It was determined that BVF dominates the shear yield and ultimate strength of human skull bone, but the imposed uniaxial loading rate (0.001 and 0.1 s-1) did not have as strong a contribution (p = 0.181-0.806 > 0.05) for the shear yield and ultimate strength of the skull bone layer specimens. Shear yield and ultimate strength data were highly correlated to power law relationships of BVF (R2 = 0.917-0.949). Full-thickness and partial loaded SPT experiments indicate the diploë primarily dictates the shear strength of the intact structure.
Collapse
Affiliation(s)
- A D Brown
- Weapons and Materials Research Directorate, U.S. Army Development Command Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, USA.
| | - K A Rafaels
- Weapons and Materials Research Directorate, U.S. Army Development Command Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, USA
| | - T Weerasooriya
- Weapons and Materials Research Directorate, U.S. Army Development Command Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, USA
| |
Collapse
|
7
|
Ziętala M, Durejko T, Panowicz R, Konarzewski M. Microstructure Evolution of 316L Steel Prepared with the Use of Additive and Conventional Methods and Subjected to Dynamic Loads: A Comparative Study. MATERIALS 2020; 13:ma13214893. [PMID: 33142708 PMCID: PMC7662622 DOI: 10.3390/ma13214893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
The mechanical properties and microstructure evolution caused by dynamic loads of 316L stainless steel, fabricated using the Laser Engineered Net Shaping (LENS) technique and hot forging method were studied. Full-density samples, without cracks made of 316L stainless steel alloy powder by using the LENS technique, are characterized by an untypical bi-modal microstructure consisting of macro-grains, which form sub-grains with a similar crystallographic orientation. Wrought stainless steel 316L has an initial equiaxed and one-phase structure, which is formed by austenite grains. The electron backscattered diffraction (EBSD) technique was used to illustrate changes in the microstructure of SS316L after it was subjected to dynamic loads, and it was revealed that for both samples, the grain refinement increases as the deformation rate increases. However, in the case of SS316L samples made by LENS, the share of low-angle boundaries (sub-grains) decreases, and the share of high-angle boundaries (grains of austenite) increases. Dynamically deformed wrought SS316L is characterized by the reverse trend: a decrease in the share of high-angle boundaries and an increase in the share of low-angle boundaries. Moreover, additively manufactured SS316L is characterized by lower plastic flow stresses compared with hot-forged steel, which is caused by the finer microstructure of wrought samples relative to that of additive samples. In the case of additively manufactured 316L steel samples subjected to a dynamic load, plastic deformation occurs predominantly through dislocation slip, in contrast to the wrought samples, in which the dominant mechanism of deformation is twinning, which is favored by a high deformation speed and low stacking fault energy (SFE) for austenite.
Collapse
Affiliation(s)
- Michał Ziętala
- Department of Materials Technology, Military University of Technology, Gen. Kaliskiego Str. 2, 00-908 Warsaw, Poland; (M.Z.); (T.D.)
| | - Tomasz Durejko
- Department of Materials Technology, Military University of Technology, Gen. Kaliskiego Str. 2, 00-908 Warsaw, Poland; (M.Z.); (T.D.)
| | - Robert Panowicz
- Faculty of Mechanical Engineering, Military University of Technology, Gen. Kaliskiego Str. 2, 00-908 Warsaw, Poland;
- Correspondence:
| | - Marcin Konarzewski
- Faculty of Mechanical Engineering, Military University of Technology, Gen. Kaliskiego Str. 2, 00-908 Warsaw, Poland;
| |
Collapse
|
8
|
Simulation analysis of impact damage to the bone tissue surrounding a dental implant. Sci Rep 2020; 10:6927. [PMID: 32332927 PMCID: PMC7181623 DOI: 10.1038/s41598-020-63666-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/31/2020] [Indexed: 12/03/2022] Open
Abstract
Dental implant may suffer transient external impacts. To simulate the effect of impact forces on bone damage is very important for evaluation of damage and guiding treatment in clinics. In this study, an animal model was established by inserting an implant into the femoral condyle of New Zealand rabbit. Implant with good osseointegration was loaded with impact force. A three-dimensional finite element model was established based on the data of the animal model. Damage process to bone tissue was simulated with Abaqus 6.13 software combining dynamic mechanical properties of the femur. The characteristics of bone damage were analyzed by comparing the results of animal testing with numerical simulation data. After impact, cortical bone around the implant and trabecular at the bottom of the implant were prone to damage. The degree of damage correlated with the direction of loading and the magnitude of the impact. Lateral loading was most likely performed to damage cancellous bone. The stress wave formed by the impact force can damage the implant–bone interface and peri-implant trabeculae. The data from numerical simulations were consistent with data from animal experiments, highlighting the importance of a thorough examination and evaluation based on the patient’s medical history.
Collapse
|
9
|
Influence of Imperfect Position of a Striker and Input Bar on Wave Propagation in a Split Hopkinson Pressure Bar (SHPB) Setup with a Pulse-Shape Technique. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of using a pulse shaper technique, such as rounding a striker or applying a pulse shaper on the signals recorded with the split Hopkinson pressure bar (SHPB) technique, when the striker and the input bar are in an imperfect position, was investigated. Two of the most common cases have been analyzed: an offset of the symmetry axes of the striker and the input bar; and an inclination angle between the striker and the input bar. LS-Dyna software was used to examine this problem numerically. The inclination angle imperfection has a significant impact on signal disturbances, whereas the use of a rounded striker significantly affects the limitation of the vibration flexural modes. In all considered cases, a slight imperfection causes a reduction in the high-frequency Pochhammer–Chree oscillations.
Collapse
|
10
|
Jongpairojcosit N, Glunrawd C, Jearanaisilawong P. Compressive behavior of Sulcata Tortoise’s carapace at high rate of deformation. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/297/1/012015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Prot M, Cloete T, Saletti D, Laporte S. The behavior of cancellous bone from quasi-static to dynamic strain rates with emphasis on the intermediate regime. J Biomech 2016; 49:1050-1057. [DOI: 10.1016/j.jbiomech.2016.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/17/2022]
|
12
|
Latella C, Dotta M, Forni D, Tesio N, Cadoni E. Influence of strain rate on the mechanical behaviour in tension of bovine cortical bone. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159403001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|