1
|
Kaliya K, Bhardwaj N, Ruchika, Saneja A. Synthesis of a Gemcitabine Prodrug and its Encapsulation into Polymeric Nanoparticles for Improved Therapeutic Efficacy. ChemMedChem 2025; 20:e202400532. [PMID: 39778057 DOI: 10.1002/cmdc.202400532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Gemcitabine (GEM), a chemotherapeutic agent, is widely used to treat various neoplastic conditions, such as pancreatic, lung, breast, and ovarian cancer. However, its therapeutic effectiveness is often hindered by its short half-life and susceptibility to enzymatic degradation. To address these limitations, in this research, five new conjugates of GEM were synthesized by conjugating its N-4 amino group with five different acids [4-decenoic acid (4Dec), lipoic acid (Lipo), lauric acid (Laur), 5-benzyl N-(tert-butoxycarbonyl)- L-glutamate (Glu), and decanoic acid (Dec)]. The anticancer potential of these conjugates was evaluated using CCK-8 assay. Among the synthesized conjugates, 4Dec-GEM demonstrated comparable cytotoxic activity to native GEM. The mechanistic insight of 4Dec-GEM was investigated using annexin-V FITC/propidium iodide staining, reactive oxygen species generation, and mitochondrial membrane potential loss assays. To further enhance its therapeutic efficacy, 4Dec-GEM was encapsulated into poly(lactic-co-glycolic acid) (PLGA) nanoparticles using single-emulsion method using high-pressure homogenization. The developed nanoparticles were characterized by various techniques (TEM, FT-IR, DSC, p-XRD) and demonstrated successful entrapment of 4Dec-GEM inside PLGA nanoparticles. Finally, the cytotoxicity of developed nanoparticles demonstrated improved anticancer activity as compared to native GEM in cancerous cell lines. Our study demonstrated that the combination of prodrug and nanoparticle approach can be a promising approach to augment the therapeutic efficacy of GEM.
Collapse
Affiliation(s)
- Kajal Kaliya
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Bhardwaj
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchika
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Zhang X, Liao Z, Han C, Wu J, Yu Y, Chen X, Gong H, He G, Zhang X. Jade powder/PLGA composite microspheres for improved performance as potential bone repair drug carrier. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:743-755. [PMID: 39535251 DOI: 10.1080/09205063.2024.2426397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) has been widely used as drug delivery carrier or scaffold for bone repair due to its good biocompatibility, biodegradability, and degradation rate controllability. However, defects, like acidic degradation by-products, are associated with PLGA and restrict its practical applications. Jade powder, leftover from jade polishing process, is a natural material rich in elements of Ca, Si, and Mg while biocompatible and antibacterial. Herein, jade powder/PLGA composite microspheres with different mass ratios were prepared by emulsion solvent evaporation method under the optimized conditions. Characterization from SEM, EDS, FTIR, and surface water contact angle measurements indicated jade powder was successfully combined with PLGA and improved the surface wettability of the microspheres. Moreover, it was proved, through in vitro simulated body fluid test as well as adipose stem cell osteogenesis analysis, that jade powder addition enhanced the pH buffering capacity of the composite microsphere for simulated body fluid, and promoted the in vitro osteogenic activity of adipose stem cells at a certain amount. This study provides new ideas to employ jade powder, a natural material otherwise thrown away as solid waste, for improvement on PLGA performance in bone repair or potentially other biomedical fields.
Collapse
Affiliation(s)
- Xinlu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin, China
- R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Zelin Liao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin, China
- R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Chong Han
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin, China
- R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Junliang Wu
- Leicester International Institute, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yifei Yu
- Leicester International Institute, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xingyu Chen
- Leicester International Institute, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Hao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin, China
- R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin, China
- R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xiujuan Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Science, Panjin Campus, Dalian University of Technology, Panjin, China
- R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
3
|
Gupta P, Bermejo-Rodriguez C, Kocher H, Pérez-Mancera PA, Velliou EG. Chemotherapy Assessment in Advanced Multicellular 3D Models of Pancreatic Cancer: Unravelling the Importance of Spatiotemporal Mimicry of the Tumor Microenvironment. Adv Biol (Weinh) 2024; 8:e2300580. [PMID: 38327154 DOI: 10.1002/adbi.202300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a challenge for global health with very low survival rate and high therapeutic resistance. Hence, advanced preclinical models for treatment screening are of paramount importance. Herein, chemotherapeutic (gemcitabine) assessment on novel (polyurethane) scaffold-based spatially advanced 3D multicellular PDAC models is carried out. Through comprehensive image-based analysis at the protein level, and expression analysis at the mRNA level, the importance of stromal cells is confirmed, primarily activated stellate cells in the chemoresistance of PDAC cells within the models. Furthermore, it is demonstrated that, in addition to the presence of activated stellate cells, the spatial architecture of the scaffolds, i.e., segregation/compartmentalization of the cancer and stromal zones, affect the cellular evolution and is necessary for the development of chemoresistance. These results highlight that, further to multicellularity, mapping the tumor structure/architecture and zonal complexity in 3D cancer models is important for better mimicry of the in vivo therapeutic response.
Collapse
Affiliation(s)
- Priyanka Gupta
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| | - Camino Bermejo-Rodriguez
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Pedro A Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Eirini G Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
| |
Collapse
|
4
|
Yugatama A, Huang YL, Hsu MJ, Lin JP, Chao FC, Lam JKW, Hsieh CM. Oral Delivery of Photopolymerizable Nanogels Loaded with Gemcitabine for Pancreatic Cancer Therapy: Formulation Design, and in vitro and in vivo Evaluations. Int J Nanomedicine 2024; 19:3753-3772. [PMID: 38686338 PMCID: PMC11057685 DOI: 10.2147/ijn.s443610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Background Gemcitabine (GEM) faces challenges of poor oral bioavailability and extensive first-pass metabolism. Currently, only injectable formulations are available for clinical use. Hence, there is an urgent demand for the development of advanced, efficacious, and user-friendly dosage forms to maintain its status as the primary treatment for pancreatic ductal adenocarcinoma (PDAC). Nanogels (NGs) offer a novel oral drug delivery system, ideal for hydrophilic compounds like GEM. This study aims to develop NGs tailored for GEM delivery, with the goal of enhancing cellular uptake and gastrointestinal permeability for improved administration in PDAC patients. Methods We developed cross-linked NGs via photopolymerization of methacryloyl for drug delivery of GEM. We reveal characterization, cytotoxicity, and cellular uptake studies in Caco-2 and MIA PaCa-2 cells. In addition, studies of in vitro permeability and pharmacokinetics were carried out to evaluate the bioavailability of the drug. Results Our results show NGs, formed via photopolymerization of methacryloyl, had a spherical shape with a size of 233.91±7.75 nm. Gemcitabine-loaded NGs (NGs-GEM) with 5% GelMA exhibited efficient drug loading (particle size: 244.07±19.52 nm). In vitro drug release from NGs-GEM was slower at pH 1.2 than pH 6.8. Cellular uptake studies indicated significantly enhanced uptake in both MIA PaCa-2 and Caco-2 cells. While there was no significant difference in GEM's AUC and Cmax between NGs-GEM and free-GEM groups, NGs-GEM showed markedly lower dFdU content (10.07 hr∙μg/mL) compared to oral free-GEM (19.04 hr∙μg/mL) after oral administration (p<0.01), highlighting NGs' efficacy in impeding rapid drug metabolism and enhancing retention. Conclusion In summary, NGs enhance cellular uptake, inhibit rapid metabolic degradation of GEM, and prolong retention after oral administration. These findings suggest NGs-GEM as a promising candidate for clinical use in oral pancreatic cancer therapy.
Collapse
Affiliation(s)
- Adi Yugatama
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmacy, Sebelas Maret University, Surakarta, 57126, Indonesia
| | - Ya-Lin Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Pei Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| | - Fang-Ching Chao
- CNRS UMR 8612, Institut Galien Paris-Saclay, Université Paris-Saclay, Orsay, 91400, France
| | - Jenny K W Lam
- Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmaceutics, School of Pharmacy, University College, London, WC1N 1AX, UK
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
5
|
Freire N, Barbosa RDM, García-Villén F, Viseras C, Perioli L, Fialho R, Albuquerque E. Environmentally Friendly Strategies for Formulating Vegetable Oil-Based Nanoparticles for Anticancer Medicine. Pharmaceutics 2023; 15:1908. [PMID: 37514094 PMCID: PMC10386571 DOI: 10.3390/pharmaceutics15071908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The development of green synthesized polymeric nanoparticles with anticancer studies has been an emerging field in academia and the pharmaceutical and chemical industries. Vegetable oils are potential substitutes for petroleum derivatives, as they present a clean and environmentally friendly alternative and are available in abundance at relatively low prices. Biomass-derived chemicals can be converted into monomers with a unique structure, generating materials with new properties for the synthesis of sustainable monomers and polymers. The production of bio-based polymeric nanoparticles is a promising application of green chemistry for biomedical uses. There is an increasing demand for biocompatible and biodegradable materials for specific applications in the biomedical area, such as cancer therapy. This is encouraging scientists to work on research toward designing polymers with enhanced properties and clean processes, containing oncology active pharmaceutical ingredients (APIs). The nanoencapsulation of these APIs in bio-based polymeric nanoparticles can control the release of the substances, increase bioavailability, reduce problems of volatility and degradation, reduce side effects, and increase treatment efficiency. This review discusses the use of green chemistry for bio-based nanoparticle production and its application in anticancer medicine. The use of castor oil for the production of renewable monomers and polymers is proposed as an ideal candidate for such applications, as well as more suitable methods for the production of bio-based nanoparticles and some oncology APIs available for anticancer application.
Collapse
Affiliation(s)
- Nathália Freire
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Av. de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luana Perioli
- Department of Pharmaceutic Science, University of Perugia, 06123 Perugia, Italy
| | - Rosana Fialho
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Elaine Albuquerque
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| |
Collapse
|
6
|
Zhang Z, Chen Y, Zheng L, Du J, Wei S, Zhu X, Xiong JW. A DUSP6 inhibitor suppresses inflammatory cardiac remodeling and improves heart function after myocardial infarction. Dis Model Mech 2023; 16:285836. [PMID: 36478044 PMCID: PMC9789401 DOI: 10.1242/dmm.049662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction (MI) results in loss of cardiomyocytes and abnormal cardiac remodeling with severe inflammation and fibrosis. However, how cardiac repair can be achieved by timely resolution of inflammation and cardiac fibrosis remains incompletely understood. Our previous findings have shown that dual-specificity phosphatase 6 (DUSP6) is a regeneration repressor from zebrafish to rats. In this study, we found that intravenous administration of the DUSP6 inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) improved heart function and reduced cardiac fibrosis in MI rats. Mechanistic analysis revealed that BCI attenuated macrophage inflammation through NF-κB and p38 signaling, independent of DUSP6 inhibition, leading to the downregulation of various cytokines and chemokines. In addition, BCI suppressed differentiation-related signaling pathways and decreased bone-marrow cell differentiation into macrophages through inhibiting DUSP6. Furthermore, intramyocardial injection of poly (D, L-lactic-co-glycolic acid)-loaded BCI after MI had a notable effect on cardiac repair. In summary, BCI improves heart function and reduces abnormal cardiac remodeling by inhibiting macrophage formation and inflammation post-MI, thus providing a promising pro-drug candidate for the treatment of MI and related heart diseases. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Zongwang Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Yang Chen
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Jianyong Du
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Shicheng Wei
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Authors for correspondence (; )
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing 211800, China
- Authors for correspondence (; )
| |
Collapse
|
7
|
Kale K, Fulfager A, Juvale K, Yadav KS. Long circulating polymeric nanoparticles of gemcitabine HCl using PLGA-PEG-PPG-PEG block co-polymer. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Ketaki Kale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, India
| | - Aditi Fulfager
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, India
| | - Khushwant S. Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, India
| |
Collapse
|
8
|
Lee CH, Huang CH, Hung KC, Huang SC, Kuo CC, Liu SJ. Nanofibrous Vildagliptin/PLGA Membranes Accelerate Diabetic Wound Healing by Angiogenesis. Pharmaceuticals (Basel) 2022; 15:1358. [PMID: 36355530 PMCID: PMC9696371 DOI: 10.3390/ph15111358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The inhibition of dipeptidyl peptidase-4 (DPP4) significantly enhances the wound closure rate in diabetic patients with chronic foot ulcers. DPP4 inhibitors are only prescribed for enteral, but topical administration, if feasible, to a wound would have more encouraging outcomes. Nanofibrous drug-eluting poly-D-L-lactide-glycolide (PLGA) membranes that sustainably release a high concentration of vildagliptin were prepared to accelerate wound healing in diabetes. Solutions of vildagliptin and PLGA in hexafluoroisopropanol were electrospun into nanofibrous biodegradable membranes. The concentration of the drug released in vitro from the vildagliptin-eluting PLGA membranes was evaluated, and it was found that effective bioactivity of vildagliptin can be discharged from the nanofibrous vildagliptin-eluting membranes for 30 days. Additionally, the electrospun nanofibrous PLGA membranes modified by blending with vildagliptin had smaller fiber diameters (336.0 ± 69.1 nm vs. 743.6 ± 334.3 nm, p < 0.001) and pore areas (3405 ± 1437 nm2 vs. 8826 ± 4906 nm2, p < 0.001), as well as a higher hydrophilicity value (95.2 ± 2.2° vs. 113.9 ± 4.9°, p = 0.004), and showed a better water-retention ability within 24 h compared with PLGA membranes. The vildagliptin-eluting PLGA membrane also enhanced the diabetic wound closure rate for two weeks (11.4 ± 3.0 vs. 18.7 ± 2.6 %, p < 0.001) and the level of the angiogenesis using CD31 expression (1.73 ± 0.39 vs. 0.45 ± 0.17 p = 0.006 for Western blot; 2.2 ± 0.5 vs. 0.7 ± 0.1, p < 0.001 for immunofluorescence). These results demonstrate that nanofibrous drug-eluting PLGA membranes loaded with vildagliptin are an effective agent for sustained drug release and, therefore, for accelerating cutaneous wound healing in the management of diabetic wounds.
Collapse
Affiliation(s)
- Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Chien-Hao Huang
- Linkou Medical Center, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kuo-Chun Hung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Shu-Chun Huang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, New Taipei Municipal Tucheng Hospital, New Taipei 23652, Taiwan
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chi-Ching Kuo
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Shih-Jung Liu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
9
|
García-Melero J, López-Mitjavila JJ, García-Celma MJ, Rodriguez-Abreu C, Grijalvo S. Rosmarinic Acid-Loaded Polymeric Nanoparticles Prepared by Low-Energy Nano-Emulsion Templating: Formulation, Biophysical Characterization, and In Vitro Studies. MATERIALS 2022; 15:ma15134572. [PMID: 35806696 PMCID: PMC9267406 DOI: 10.3390/ma15134572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
Rosmarinic acid (RA), a caffeic acid derivative, has been loaded in polymeric nanoparticles made up of poly(lactic-co-glycolic acid) (PLGA) through a nano-emulsion templating process using the phase-inversion composition (PIC) method at room temperature. The obtained RA-loaded nanoparticles (NPs) were colloidally stable exhibiting average diameters in the range of 70–100 nm. RA was entrapped within the PLGA polymeric network with high encapsulation efficiencies and nanoparticles were able to release RA in a rate-controlled manner. A first-order equation model fitted our experimental data and confirmed the prevalence of diffusion mechanisms. Protein corona formation on the surface of NPs was assessed upon incubation with serum proteins. Protein adsorption induced an increase in the hydrodynamic diameter and a slight shift towards more negative surface charges of the NPs. The radical scavenging activity of RA-loaded NPs was also studied using the DPPH·assay and showed a dose–response relationship between the NPs concentration and DPPH inhibition. Finally, RA-loaded NPs did not affect the cellular proliferation of the human neuroblastoma SH-SY5Y cell line and promoted efficient cellular uptake. These results are promising for expanding the use of O/W nano-emulsions in biomedical applications.
Collapse
Affiliation(s)
- Jessica García-Melero
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - Joan-Josep López-Mitjavila
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
| | - María José García-Celma
- Department of Pharmacy, Pharmaceutical Technology, and Physical-Chemistry, R+D Associated Unit to CSIC Pharmaceutical Nanotechnology, IN2UB, University of Barcelona, Joan XXIII 27-31, E-08028 Barcelona, Spain;
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Carlos Rodriguez-Abreu
- Institute for Advanced Chemistry of Catalonia (CSIC-IQAC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (J.G.-M.); (J.-J.L.-M.)
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| | - Santiago Grijalvo
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Correspondence: (C.R.-A.); (S.G.)
| |
Collapse
|
10
|
Zhang G, Li N, Qi Y, Zhao Q, Zhan J, Yu D. Synergistic ferroptosis-gemcitabine chemotherapy of the gemcitabine loaded carbonaceous nanozymes to enhance the treatment and magnetic resonance imaging monitoring of pancreatic cancer. Acta Biomater 2022; 142:284-297. [PMID: 35151925 DOI: 10.1016/j.actbio.2022.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the deadliest cancers, and it is resistant to most conventional antineoplastic therapies. To address this challenge, gemcitabine (Gem)-loaded carbonaceous nanoparticles (MFC-Gem) as nanozymes and a theranostic platform were fabricated and used for MR-guided ferroptosis-chemo synergetic therapy of PDAC. As a biocompatible carrier, MFC-Gem nanoparticles are regarded as peroxidase-like and glutathione peroxidase-like nanozymes that promote ferroptosis therapy by effectively generating ROS and consuming GSH. Meanwhile, the combination of MnFe2O4 and Gem can markedly enhance synergetic therapy by both ferroptosis and Gem chemotherapy. MFC-Gem has higher magnetic susceptibility and was used for simultaneous magnetic resonance imaging (MRI) monitoring of the PDAC treatment. In conclusion, these salient features unequivocally indicate that this biocompatible nanotheranostic system has cooperative and enhancing chemotherapy effects for anti-PDAC therapy with simultaneous MRI monitoring. STATEMENT OF SIGNIFICANCE: Pancreatic adenocarcinoma (PDAC) is one of the deadliest cancers, and it is resistant to most conventional antineoplastic therapies. To address this challenge, gemcitabine (Gem)-loaded carbonaceous nanoparticles (MFC-Gem) as nanozymes and a theranostic platform were fabricated and used for MR-guided ferroptosis-chemo synergetic therapy of PDAC. i) MFC nanoparticles are regarded as peroxidase-like and glutathione peroxidase-like nanozymes that enhance ferroptosis therapy by effectively generating ROS and consuming GSH. ii) The combination of MnFe2O4 and Gem can markedly enhance synergetic therapy by both ferroptosis and Gem chemotherapy. iii) MFC-Gem has higher magnetic susceptibility and was used for simultaneous magnetic resonance imaging (MRI) monitoring of the PDAC treatment.
Collapse
Affiliation(s)
- Gaorui Zhang
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan, 250100, China
| | - Nianlu Li
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan, 250100, China
| | - Yafei Qi
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan, 250100, China
| | - Quanqin Zhao
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan, 250100, China
| | - Jinhua Zhan
- Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan, 250100, China.
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University, Jinan, 250100, China.
| |
Collapse
|
11
|
Demirtürk N, Bilensoy E. Nanocarriers targeting the diseases of the pancreas. Eur J Pharm Biopharm 2022; 170:10-23. [PMID: 34852262 DOI: 10.1016/j.ejpb.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
Diseases of the pancreas include acute and chronic pancreatitis, exocrine pancreatic insufficiency, diabetes and pancreatic cancer. These pathologies can be difficult to treat due to the innate properties of the pancreas, its structure and localization. The need for effective targeting of the pancreatic tissue by means of nanoparticles delivering therapeutics is a major focus area covered and discussed in this review. Most common diseases of the pancreas do not have specific and direct medical treatment option, and existing treatment options are generally aimed at relieving symptoms. Diabetes has different treatment options for different subtypes based on insulin having stability problems and requiring injections reducing patient compliance. Pancreatic cancer progresses silently and can only be diagnosed in advanced stages. Therefore, survival rate of patients is very low. Gemcitabine and FOLFIRINOX treatment regimens, the most commonly used clinical standard treatments, are generally insufficient due to the chemoresistance that develops in cancer cells and also various side effects. Therefore new treatment options for pancreatic cancer are also under focus. Overcoming drug resistance and pancreatic targeting can be achieved with active and passive targeting methods, and a more effective and safer treatment regimen can be provided at lower drug doses. This review covers the current literature and clinical trials concerning pancreatic drug delivery systems in the nanoscale focusing on the challenges and opportunities provided by these smart delivery systems.
Collapse
Affiliation(s)
- Nurbanu Demirtürk
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey.
| |
Collapse
|
12
|
Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021; 13:cancers13246175. [PMID: 34944794 PMCID: PMC8699181 DOI: 10.3390/cancers13246175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite access to a vast arsenal of anticancer agents, many fail to realise their full therapeutic potential in clinical practice. One key determinant of this is the evolution of multifaceted resistance mechanisms within the tumour that may either pre-exist or develop during the course of therapy. This is particularly evident in pancreatic cancer, where limited responses to treatment underlie dismal survival rates, highlighting the urgent need for new therapeutic approaches. Here, we discuss the major features of pancreatic tumours that contribute to therapy resistance, and how they may be alleviated through exploitation of the mounting and exciting promise of nanomedicines; a unique collection of nanoscale platforms with tunable and multifunctional capabilities that have already elicited a widespread impact on cancer management. Abstract The development of drug resistance remains one of the greatest clinical oncology challenges that can radically dampen the prospect of achieving complete and durable tumour control. Efforts to mitigate drug resistance are therefore of utmost importance, and nanotechnology is rapidly emerging for its potential to overcome such issues. Studies have showcased the ability of nanomedicines to bypass drug efflux pumps, counteract immune suppression, serve as radioenhancers, correct metabolic disturbances and elicit numerous other effects that collectively alleviate various mechanisms of tumour resistance. Much of this progress can be attributed to the remarkable benefits that nanoparticles offer as drug delivery vehicles, such as improvements in pharmacokinetics, protection against degradation and spatiotemporally controlled release kinetics. These attributes provide scope for precision targeting of drugs to tumours that can enhance sensitivity to treatment and have formed the basis for the successful clinical translation of multiple nanoformulations to date. In this review, we focus on the longstanding reputation of pancreatic cancer as one of the most difficult-to-treat malignancies where resistance plays a dominant role in therapy failure. We outline the mechanisms that contribute to the treatment-refractory nature of these tumours, and how they may be effectively addressed by harnessing the unique capabilities of nanomedicines. Moreover, we include a brief perspective on the likely future direction of nanotechnology in pancreatic cancer, discussing how efforts to develop multidrug formulations will guide the field further towards a therapeutic solution for these highly intractable tumours.
Collapse
|
13
|
Cai H, Wang R, Guo X, Song M, Yan F, Ji B, Liu Y. Combining Gemcitabine-Loaded Macrophage-like Nanoparticles and Erlotinib for Pancreatic Cancer Therapy. Mol Pharm 2021; 18:2495-2506. [PMID: 34078087 DOI: 10.1021/acs.molpharmaceut.0c01225] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer is a lethal malignancy with a dismal prognosis. Gemcitabine is currently used to treat pancreatic cancer, but it is limited by significant toxicity. Clinical trials on the combination of gemcitabine and erlotinib reported unsatisfactory outcomes along with concerns of toxicity. The encapsulation of chemotherapy drugs in polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) can alleviate toxicity through targeted delivery and sustained release. In addition, camouflaging the NPs with a macrophage membrane can evade the immune system and further improve tumor homing. We designed gemcitabine-loaded PLGA NPs with a macrophage membrane coating (MPGNPs) to reduce drug toxicity and increase the accumulation in the tumor. The combination of MPGNPs and erlotinib synergistically inhibited pancreatic cancer cell proliferation in vitro and in vivo by targeting the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways. The MPGNPs were also able to evade phagocytosis and achieve passive targeting to the pancreatic tumors. The combination of MPGNPs and erlotinib showed synergistic anti-tumor efficacy in vitro and in vivo. This study provides a proof-of-concept for treating pancreatic cancer with a combination of MPGNPs and erlotinib.
Collapse
Affiliation(s)
- Hongqiao Cai
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Ruobing Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Xingren Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Meiyu Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), International Research Center for Chemistry-Medicine Joint Innovation, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital, Jilin University, 71 Xinmin Street, Changchun 130021, China
| |
Collapse
|
14
|
Rajagopal P, Jayandharan GR, Krishnan UM. Evaluation of the Anticancer Activity of pH-Sensitive Polyketal Nanoparticles for Acute Myeloid Leukemia. Mol Pharm 2021; 18:2015-2031. [PMID: 33780253 DOI: 10.1021/acs.molpharmaceut.0c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyketals are a class of acid-responsive polymers that have been relatively less explored for drug delivery applications compared to polyesters. The degradation of these polymers is accelerated in an acidic medium and does not result in acidic byproducts. Their biocompatibility depends on the diol used for the synthesis. The present work aims to synthesize, characterize, and fabricate nanospheres of an aliphatic polyketal for delivery of the nucleotide analogue cytarabine toward the treatment of acute myeloid leukemia (AML). The internalization mechanism of the nanospheres was probed, and its implication on the nuclear localization and escape from the endo-lysosomal compartments were studied. The drug-loaded polyketal nanoparticles reduced the cell viability to a greater extent compared with the free drug. The effect of the drug-loaded polyketal nanoparticles on the differential gene expression of leukemic cells was investigated for the first time to understand their therapeutic implications. It was found that treatment with drug-loaded polyketal nanoparticles downregulated AML-specific genes involved in cell proliferation and recurrence compared to the free drug. The protein expression studies were performed for selected genes obtained from gene expression analysis. Biodistribution studies showed that the poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) nanoparticles exhibit prolonged circulation time. Overall, our results suggest that polyketal-based delivery of cytarabine represents a more effective alternative strategy for AML therapy.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.,The Mehta Family Centre for Engineering In Medicine, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
15
|
Jaidev LR, Chede LS, Kandikattu HK. Theranostic Nanoparticles for Pancreatic Cancer Treatment. Endocr Metab Immune Disord Drug Targets 2021; 21:203-214. [PMID: 32416712 DOI: 10.2174/1871530320666200516164911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
Pancreatic cancer is one of the low vascular permeable tumors with a high mortality rate. The five-year survival period is ~5%. The field of drug delivery is at its pace in developing unique drug delivery carriers to treat high mortality rate cancers such as pancreatic cancer. Theranostic nanoparticles are the new novel delivery carriers where the carrier is loaded with both diagnostic and therapeutic agents. The present review discusses various therapeutic and theranostic nanocarriers for pancreatic cancer.
Collapse
Affiliation(s)
- Leela R Jaidev
- College of Pharmacy, University of Iowa, 52246, Iowa, United States
| | - Laxmi S Chede
- College of Pharmacy, University of Iowa, 52246, Iowa, United States
| | - Hemanth K Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| |
Collapse
|
16
|
Heyder RS, Sunbul FS, Almuqbil RM, Fines CB, da Rocha SRP. Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy. J Control Release 2021; 330:1178-1190. [PMID: 33212118 PMCID: PMC10939058 DOI: 10.1016/j.jconrel.2020.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Gemcitabine (GMT) is a nucleoside analog used in the treatment of a variety of solid tumors. GMT was chemically modified with a hydrolysable linker, and subsequently incorporated into a poly(anhydride-ester) backbone via melt-polymerization, with the active antimetabolite GMT, thus, becoming the repeat unit that makes up this new material, a biodegradable polymer. Characterization of the structure of polymeric GMT (polyGMT) revealed the incorporation of an average 26 molecules of GMT per polymer chain, which corresponds to a drug loading of 58%w/w. The glass transition temperature of the formed polyGMT was determined to be 123 °C. PolyGMT was engineered into nanoparticles (NPs) using a dialysis-based method, with a resulting geometric diameter of 206 ± 38 nm. The particles are easily dispersible and stable in aqueous-based media, with a hydrodynamic diameter of 229 ± 28 nm. The prepared hydrolysable polyGMT NPs demonstrate ultra-long release profile due to the hydrophobic nature of the linker, and as per characteristic erosion behavior of polymers with anhydride-ester bonds. Accelerated in vitro release studies demonstrate the recovery of free GMT upon hydrolysis, with biological activity as assessed by cytotoxicity assays performed in adenocarcinoma human alveolar basal epithelial (A549) and highly metastatic murine osteosarcoma (K7M2) cells lines. The characteristics of polyGMT, including its thermal properties and built in hydrolysable structure, are thus conducive for use in the preparation of drug delivery systems. Engineered structures prepared with polyGMT can maintain their morphology at ambient and physiologically relevant conditions, and free GMT is recovered as the anhydride and ester bonds are hydrolyzed. This work is innovative as for the first time we demonstrate the ability to polymerize GMT in a hydrolysable polymer structure, and engineer NPs of this polymeric chemotherapy. The synthetic strategy allows for tuning of the polymer hydrophobicity and thus potentialize its behavior, including degradation profile, by varying the linker chemistry. Such controlled release hydrolysable polymers with very high drug loading and controlled erosion profiles are relevant as they may offer new opportunities in drug delivery applications for the treatment of malignant neoplasms.
Collapse
Affiliation(s)
- Rodrigo S Heyder
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Fatemah S Sunbul
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Rashed M Almuqbil
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Cory B Fines
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Sandro R P da Rocha
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States.
| |
Collapse
|
17
|
Thiolated chitosan nanoparticles for augmented oral bioavailability of gemcitabine: Preparation, optimization, in vitro and in vivo study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Symbiotic thermo-chemotherapy for enhanced HepG2 cancer treatment via magneto-drugs encapsulated polymeric nanocarriers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Production of drug-releasing biodegradable microporous scaffold impregnated with gemcitabine using a CO2 foaming process. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Hanurry EY, Mekonnen TW, Andrgie AT, Darge HF, Birhan YS, Hsu WH, Chou HY, Cheng CC, Lai JY, Tsai HC. Biotin-Decorated PAMAM G4.5 Dendrimer Nanoparticles to Enhance the Delivery, Anti-Proliferative, and Apoptotic Effects of Chemotherapeutic Drug in Cancer Cells. Pharmaceutics 2020; 12:E443. [PMID: 32403321 PMCID: PMC7284937 DOI: 10.3390/pharmaceutics12050443] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/29/2022] Open
Abstract
Biotin receptors are overexpressed by various types of solid cancer cells and play a significant role in tumor metabolism, growth, and metastasis. Thus, targeting the biotin receptors on tumor cells may enhance the efficiency and reduce the side-effects of chemotherapy. The aim of this study was to develop a biotin-coupled poly(amido)amine (PAMAM) (PG4.5) dendrimer nanoparticle to enhance the tumor-specific delivery and intracellular uptake of anticancer drugs via receptor-mediated endocytosis. We modified PG4.5 with diethylenetriamine (DETA) followed by biotin via an amide bond and characterized the resulting PG4.5-DETA-biotin nanoparticles by 1H NMR, FTIR, and Raman spectroscopy. Loading and releasing of gemcitabine (GEM) from PG4.5-DETA-biotin were evaluated by UV-Visible spectrophotometry. Cell viability and cellular uptake were examined by MTT assay and flow cytometry to assess the biocompatibility, cellular internalization efficiency and antiproliferative activity of PG4.5-DETA-biotin/GEM. Gemcitabine-loaded PG4.5-DETA-biotin nanoparticles were spherical with a particle size of 81.6 ± 6.08 nm and zeta potential of 0.47 ± 1.25 mV. Maximum drug-loading content and encapsulation efficiency were 10.84 ± 0.16% and 47.01 ± 0.71%, respectively. Nearly 60.54 ± 1.99% and 73.96 ± 1.14% of gemcitabine was released from PG4.5-DETA-biotin/GEM nanoparticles after 48 h at the acidic pH values of 6.5 and 5, respectively. Flow cytometry and fluorescence microscopy of cellular uptake results revealed PG4.5-DETA-biotin/GEM nanoparticles selectively targeted cancer cells in vitro. Cytotoxicity assays demonstrated gemcitabine-loaded PG4.5-DETA-biotin significantly reduced cell viability and induced apoptosis in HeLa cells. Thus, biotin-coupled PG4.5-DETA nanocarrier could provide an effective, targeted drug delivery system and selectively convey gemcitabine into tumor cells.
Collapse
Affiliation(s)
- Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Wei-Hsin Hsu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
21
|
Pharmacokinetic and pharmacodynamic evaluation of nano-fixed dose combination for hypertension. J Hypertens 2020; 38:1593-1602. [DOI: 10.1097/hjh.0000000000002429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Gupta P, Pérez-Mancera PA, Kocher H, Nisbet A, Schettino G, Velliou EG. A Novel Scaffold-Based Hybrid Multicellular Model for Pancreatic Ductal Adenocarcinoma-Toward a Better Mimicry of the in vivo Tumor Microenvironment. Front Bioeng Biotechnol 2020; 8:290. [PMID: 32391339 PMCID: PMC7193232 DOI: 10.3389/fbioe.2020.00290] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
With a very low survival rate, pancreatic ductal adenocarcinoma (PDAC) is a deadly disease. This has been primarily attributed to (i) its late diagnosis and (ii) its high resistance to current treatment methods. The latter specifically requires the development of robust, realistic in vitro models of PDAC, capable of accurately mimicking the in vivo tumor niche. Advancements in the field of tissue engineering (TE) have helped the development of such models for PDAC. Herein, we report for the first time a novel hybrid, polyurethane (PU) scaffold-based, long-term, multicellular (tri-culture) model of pancreatic cancer involving cancer cells, endothelial cells, and stellate cells. Recognizing the importance of ECM proteins for optimal growth of different cell types, the model consists of two different zones/compartments: an inner tumor compartment consisting of cancer cells [fibronectin (FN)-coated] and a surrounding stromal compartment consisting of stellate and endothelial cells [collagen I (COL)-coated]. Our developed novel hybrid, tri-culture model supports the proliferation of all different cell types for 35 days (5 weeks), which is the longest reported timeframe in vitro. Furthermore, the hybrid model showed extensive COL production by the cells, mimicking desmoplasia, one of PDAC's hallmark features. Fibril alignment of the stellate cells was observed, which attested to their activated state. All three cell types expressed various cell-specific markers within the scaffolds, throughout the culture period and showed cellular migration between the two zones of the hybrid scaffold. Our novel model has great potential as a low-cost tool for in vitro studies of PDAC, as well as for treatment screening.
Collapse
Affiliation(s)
- Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| | - Pedro A. Pérez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hemant Kocher
- Centre for Tumour Biology and Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Giuseppe Schettino
- Department of Physics, University of Surrey, Guildford, United Kingdom
- Medical Radiation Science Group, The National Physical Laboratory, Teddington, United Kingdom
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
23
|
He X, Yuan Z, Kao W, Miller D, Li SK, Park YC. Size-Exclusive Nanoporous Biodegradable PLGA Capsules for Drug Delivery Implants and In Vivo Stability in the Posterior Segment. ACS APPLIED BIO MATERIALS 2020; 3:1722-1729. [PMID: 35021661 DOI: 10.1021/acsabm.0c00027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current standard of care for posterior segment eye diseases, such as neovascular age-related macular degeneration, diabetic macular edema, is frequent intravitreal injections or sustained-release drug implants. Intravitreal injections have a low incidence of serious complications such as retinal detachment, endophthalmitis, iatrogenic traumatic cataract, or iridocyclitis and injection-site reactions. However, there is a significant burden to the patient, the patient's family, and the health system because current intravitreal therapies require between every 4 and 12 week administration over many years. Drug implants have side effects due to the burst release of the drugs, and their release cannot be easily controlled after implantation. We have developed a size-exclusive nanoporous biodegradable PLGA capsule for dosage-controllable drug delivery implants. We have optimized the nanoporous structure by tuning the ratio between porogen and high molecular weight PLGA and tested the stability against passive leakage of the liposomal drug (1-2 μm) and the safety in vivo rabbit eyes for 6 months. Our results suggest that PLGA implants made of the nanoporous PLGA sheet can selectively release drug molecules, keeping the liposomal drug inside. In addition, the implant was biocompatible, causing no inflammation and foreign body response when implanted for 6 months. Overall, the implant shows great potential for on-demand dose-controllable drug release applications.
Collapse
Affiliation(s)
| | | | | | - Daniel Miller
- Cincinnati Eye Institute, Cincinnati, Ohio 45242, United States
| | - S Kevin Li
- College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | | |
Collapse
|
24
|
Kush P, Kaur M, Sharma M, Madan J, Kumar P, Deep A, Kim KH. Investigations of potent biocompatible metal-organic framework for efficient encapsulation and delivery of Gemcitabine: biodistribution, pharmacokinetic and cytotoxicity study. Biomed Phys Eng Express 2020; 6:025014. [DOI: 10.1088/2057-1976/ab73f7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Mukhopadhyay R, Sen R, Paul B, Kazi J, Ganguly S, Debnath MC. Gemcitabine Co-Encapsulated with Curcumin in Folate Decorated PLGA Nanoparticles; a Novel Approach to Treat Breast Adenocarcinoma. Pharm Res 2020; 37:56. [PMID: 32072346 DOI: 10.1007/s11095-020-2758-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Curcumin (CUR), an antioxidant with p-glycoprotein inhibiting activity may be encapsulated with gemcitabine (GEM) as nanosuspension to enhance its anticancer potentiality synergistically. METHODS Folate conjugated single (CUR/GEM) and dual (CUR + GEM) drug-loaded nanoformulations were prepared and evaluated for P-glycoprotein-1 (pgy-1) gene resistance, followed by in vitro cellular uptake and cytotoxicity assay in cells. The in vivo biodistribution and scintigraphic imaging was done after radiolabeling the nanoparticles with 99mTechnetium (99mTc). The tumor inhibition study was conducted in nude mice bearing MDA-MB-231 xenografts. RESULTS The folate conjugated dual drug formulations (FCGNPs) gave better results in suppressing the pgy-1 gene and also showed higher cellular uptake, cytotoxicity, apoptosis, and cell cycle arrest. The radiolabeled nanoformulations were highly stable and FCGNPs showed higher accumulation in the MDA-MB-231 tumor region than folate unconjugated dual drug NPs (CGNPs) as evidenced by scintigraphic imaging and biodistribution studies. The in vivo therapeutic efficacy of FCGNPs was higher compared to unconjugated and respective single-drug formulations. CONCLUSION Two drugs in one platform lower breast adenocarcinoma by lowering drug resistance and improving cytotoxic effects.
Collapse
Affiliation(s)
- Ria Mukhopadhyay
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Ramkrishna Sen
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Brahamacharry Paul
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Julekha Kazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center, Thakurpukur Cancer Center and Welfare Home Campus, Kolkata, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
26
|
de Mélo Silva IS, do Amorim Costa Gaspar LM, Rocha AMO, da Costa LP, Tada DB, Franceschi E, Padilha FF. Encapsulation of Red Propolis in Polymer Nanoparticles for the Destruction of Pathogenic Biofilms. AAPS PharmSciTech 2020; 21:49. [PMID: 31900606 DOI: 10.1208/s12249-019-1576-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Microbial biofilms, structured communities of microorganisms, have been often associated to the infection and bacterial multiresistance problem. Conventional treatment of infection involves the use of antibiotics, being an alternative approach is the use of red propolis, a natural product, to prepare polymer nanoparticles. The aim of the present study was to encapsulate red propolis extract in poly(lactic-co-glycolic acid) (PLGA) nanoparticles for destruction in vitro of pathogenic biofilms. Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) containing red propolis hydroethanolic extract (2 mg/mL) were produced by emulsification solvent diffusion method. The extract and developed nanoparticles were analyzed for antimicrobial activity and inhibition of bacterial biofilm formation in vitro against Staphylococcus aureus and Pseudomonas aeruginosa. Transmission electron microscopy images confirmed spherical nanoparticles in the range size from 42.4 nm (PLGA NPs) to 69.2 nm (HERP PLGA NPs), with encapsulation efficiencies of 96.99%. The free extract and encapsulated in polymer nanoparticle presented antimicrobial potential, with a minimum inhibitory concentration from 15.6 to 125 μg mL-1 and from 100 to 1560 μg mL-1 to inhibit biofilm formation for the Staphylococcus aureus and Pseudomonas aeruginosa, respectively.
Collapse
|
27
|
Dual drug loaded PLGA nanospheres for synergistic efficacy in breast cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109716. [DOI: 10.1016/j.msec.2019.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/20/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022]
|
28
|
Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 2019; 10:527-550. [DOI: 10.4155/tde-2019-0044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.
Collapse
|
29
|
Brito AEMD, Pessoa Jr A, Converti A, Rangel-Yagui CDO, Silva JAD, Apolinário AC. Poly (lactic-co-glycolic acid) nanospheres allow for high l-asparaginase encapsulation yield and activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:524-534. [DOI: 10.1016/j.msec.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 07/13/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
|
30
|
Gupta P, Totti S, Pérez-Mancera PA, Dyke E, Nisbet A, Schettino G, Webb R, Velliou EG. Chemoradiotherapy screening in a novel biomimetic polymer based pancreatic cancer model. RSC Adv 2019; 9:41649-41663. [PMID: 35541584 PMCID: PMC9076463 DOI: 10.1039/c9ra09123h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a deadly and aggressive disease with a very low survival rate. This is partly due to the resistance of the disease to currently available treatment options. Herein, we report for the first time the use of a novel polyurethane scaffold based PDAC model for screening the short and relatively long term (1 and 17 days post-treatment) responses of chemotherapy, radiotherapy and their combination. We show a dose dependent cell viability reduction and apoptosis induction for both chemotherapy and radiotherapy. Furthermore, we observe a change in the impact of the treatment depending on the time-frame, especially for radiation for which the PDAC scaffolds showed resistance after 1 day but responded more 17 days post-treatment. This is the first study to report a viable PDAC culture in a scaffold for more than 2 months and the first to perform long-term (17 days) post-treatment observations in vitro. This is particularly important as a longer time-frame is much closer to animal studies and to patient treatment regimes, highlighting that our scaffold system has great potential to be used as an animal free model for screening of PDAC. Poly-urethane scaffold based 3D pancreatic cancer model enables realistic long term chemotherapy and radiotherapy screening. This model can be used for personalised treatment screening.![]()
Collapse
Affiliation(s)
- Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem)
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford
- UK
| | - Stella Totti
- Bioprocess and Biochemical Engineering Group (BioProChem)
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford
- UK
| | | | - Eleanor Dyke
- Department of Medical Physics
- The Royal Surrey County Hospital
- NHS Foundation Trust
- Guildford
- UK
| | - Andrew Nisbet
- Department of Medical Physics
- The Royal Surrey County Hospital
- NHS Foundation Trust
- Guildford
- UK
| | - Giuseppe Schettino
- Department of Physics
- University of Surrey
- Guildford GU2 7XH
- UK
- Medical Radiation Science Group
| | - Roger Webb
- The Ion Beam Centre
- University of Surrey
- Guildford
- UK
| | - Eirini G. Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem)
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford
- UK
| |
Collapse
|
31
|
A molecular dynamics simulation study on the mechanism of loading of gemcitabine and camptothecin in poly lactic-co-glycolic acid as a nano drug delivery system. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1041-1060. [DOI: 10.1016/j.msec.2017.12.036] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 01/06/2023]
|
33
|
Serri C, Quagliariello V, Iaffaioli RV, Fusco S, Botti G, Mayol L, Biondi M. Combination therapy for the treatment of pancreatic cancer through hyaluronic acid‐decorated nanoparticles loaded with quercetin and gemcitabine: A preliminary in vitro study. J Cell Physiol 2018; 234:4959-4969. [DOI: 10.1002/jcp.27297] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Carla Serri
- Dipartimento di Farmacia Università di Napoli Federico II Napoli Italy
| | - Vincenzo Quagliariello
- Department of Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, IRCCS Napoli Italia
| | - Rosario Vincenzo Iaffaioli
- Department of Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, IRCCS Napoli Italia
| | - Sabato Fusco
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II Napoli Italy
| | - Gerardo Botti
- Scientific Director, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, IRCCS Napoli Italia
| | - Laura Mayol
- Dipartimento di Farmacia Università di Napoli Federico II Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II Napoli Italy
| | - Marco Biondi
- Dipartimento di Farmacia Università di Napoli Federico II Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II Napoli Italy
| |
Collapse
|
34
|
Lim JH, Na YG, Lee HK, Kim SJ, Lee HJ, Bang KH, Wang M, Pyo YC, Huh HW, Cho CW. Effect of surfactant on the preparation and characterization of gemcitabine-loaded particles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0402-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Totti S, Allenby MC, Dos Santos SB, Mantalaris A, Velliou EG. A 3D bioinspired highly porous polymeric scaffolding system for in vitro simulation of pancreatic ductal adenocarcinoma. RSC Adv 2018; 8:20928-20940. [PMID: 35542351 PMCID: PMC9080900 DOI: 10.1039/c8ra02633e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is an aggressive disease with an extremely low survival rate. This is due to the (i) poor prognosis and (ii) high resistance of the disease to current treatment options. The latter is partly due to the very complex and dense tissue/tumour microenvironment of pancreatic cancer, which contributes to the disease's progression and the inhibition of apoptotic pathways. Over the last years, advances in tissue engineering and the development of three-dimensional (3D) culture systems have shed more light into cancer research by enabling a more realistic recapitulation of the niches and structure of the tumour microenvironment. Herein, for the first time, 3D porous polyurethane scaffolds were fabricated and coated with fibronectin to mimic features of the structure and extracellular matrix present in the pancreatic cancer tumour microenvironment. The developed 3D scaffold could support the proliferation of the pancreatic tumour cells, which was enhanced with the presence of fibronectin, for a month, which is a significantly prolonged in vitro culturing duration. Furthermore, in situ imaging of cellular and biomarker distribution showed the formation of dense cellular masses, the production of collagen-I by the cells and the formation of environmental stress gradients (e.g. HIF-1α) with similar heterogeneity trends to the ones reported in in vivo studies. The results obtained in this study suggest that this bioinspired porous polyurethane based scaffold has great potential for in vitro high throughput studies of pancreatic cancer including drug and treatment screening.
Collapse
Affiliation(s)
- Stella Totti
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey Guildford GU2 7XH UK 0044-(0)-1483686577
| | - Mark C Allenby
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London London SW7 2AZ UK
| | - Susana Brito Dos Santos
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London London SW7 2AZ UK
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory (BSEL), Department of Chemical Engineering, Imperial College London London SW7 2AZ UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey Guildford GU2 7XH UK 0044-(0)-1483686577
| |
Collapse
|
36
|
Daman Z, Faghihi H, Montazeri H. Salinomycin nanoparticles interfere with tumor cell growth and the tumor microenvironment in an orthotopic model of pancreatic cancer. Drug Dev Ind Pharm 2018; 44:1434-1442. [PMID: 29619850 DOI: 10.1080/03639045.2018.1459674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Recently, salinomycin (SAL) has been reported to inhibit proliferation and induce apoptosis in various tumors. The aim of this study was to deliver SAL to orthotopic model of pancreatic cancer by the aid of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). METHODS The NPs were physico-chemically characterized and evaluated for cytotoxicity on luciferase-transduced AsPC-1 cells in vitro as well as implanted orthotopically into the pancreas of nude mice. RESULTS SAL (3.5 mg/kg every other day) blocked tumor growth by 52% compared to the control group after 3 weeks of therapy. Western blotting of tumor protein extracts indicated that SAL treatment leads to up-regulation of E-cadherin, β-catenin, and transforming growth factor beta receptor (TGFβR) expressions in AsPC-1 orthotopic tumor. Noteworthy, immunofluorescence staining of adjacent tumor sections showed that treatment with SAL NPs cause significant apoptosis in the tumor cells rather than the stroma. Further investigations also revealed that TGFβR2 over-expression was induced in stroma cells after treatment with SAL NPs. CONCLUSION These results highlight SAL-loaded PLGA NPs as a promising system for pancreatic cancer treatment, while the mechanistic questions need to be subsequently tested.
Collapse
Affiliation(s)
- Zahra Daman
- a Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Homa Faghihi
- a Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Hamed Montazeri
- b School of Pharmacy, International Campus , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
37
|
Hyperthermia-Triggered Gemcitabine Release from Polymer-Coated Magnetite Nanoparticles. Polymers (Basel) 2018; 10:polym10030269. [PMID: 30966304 PMCID: PMC6415114 DOI: 10.3390/polym10030269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/27/2018] [Accepted: 03/03/2018] [Indexed: 12/11/2022] Open
Abstract
In this work a combined, multifunctional platform, which was devised for the simultaneous application of magnetic hyperthermia and the delivery of the antitumor drug gemcitabine, is described and tested in vitro. The system consists of magnetite particles embedded in a polymer envelope, designed to make them biocompatible, thanks to the presence of poly (ethylene glycol) in the polymer shell. The commercial particles, after thorough cleaning, are provided with carboxyl terminal groups, so that at physiological pH they present negative surface charge. This was proved by electrophoresis, and makes it possible to electrostatically adsorb gemcitabine hydrochloride, which is the active drug of the resulting nanostructure. Both electrophoresis and infrared spectroscopy are used to confirm the adsorption of the drug. The gemcitabine-loaded particles are tested regarding their ability to release it while heating the surroundings by magnetic hyperthermia, in principle their chances as antitumor agents. The release, with first-order kinetics, is found to be faster when carried out in a thermostated bath at 43 °C than at 37 °C, as expected. But, the main result of this investigation is that while the particles retain their hyperthermia response, with reasonably high heating power, they release the drug faster and with zeroth-order kinetics when they are maintained at 43 °C under the action of the alternating magnetic field used for hyperthermia.
Collapse
|
38
|
Borie C, Mondal S, Arif T, Briand M, Lingua H, Dumur F, Gigmes D, Stocker P, Barbarat B, Robert V, Nicoletti C, Olive D, Maresca M, Nechab M. Enediynes bearing polyfluoroaryl sulfoxide as new antiproliferative agents with dual targeting of microtubules and DNA. Eur J Med Chem 2018; 148:306-313. [PMID: 29471119 DOI: 10.1016/j.ejmech.2018.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 12/15/2022]
Abstract
A novel series of enediynes possessing pentafluorophenylsulfoxide have been developed. The innovative compounds possess antiproliferative activity against a broad panel of human cancer cells originating from breast, blood, lung, kidney, colon, prostate, pancreas or skin with IC50 ranging from 0.6 to 3.4 μM. The antiproliferative activity of enediynes in darkness is associated to their ability to compromise microtubule network. In addition, exposure to UV leads to double-stranded DNA cleavage caused by the newly synthesized molecules reducing further their IC50 in nanomolar range against human tumor cells, including chemo-resistant pancreatic cancer cells. Taken together, the examined data demonstrate that enediynes possessing pentafluorosulfoxide are promising molecules in the cancer therapy.
Collapse
Affiliation(s)
- Cyril Borie
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Shovan Mondal
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France; Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Tanzeel Arif
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Manon Briand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Hugo Lingua
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Pierre Stocker
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France
| | - Bernadette Barbarat
- Centre de Recherche en Cancérologie de Marseille (CRCM) UMR-INSERM1068-IBiSA Cancer Immunomonitoring Platform, Inserm, U1068, France; Institut Paoli Calmettes, 27, Boulevard Lei Roure, BP30059, 13273, Marseille Cedex 09, France
| | - Viviane Robert
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, F-13397, Marseille, France
| | - Cendrine Nicoletti
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, F-13397, Marseille, France
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM) UMR-INSERM1068-IBiSA Cancer Immunomonitoring Platform, Inserm, U1068, France; Institut Paoli Calmettes, 27, Boulevard Lei Roure, BP30059, 13273, Marseille Cedex 09, France
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR 7313, F-13397, Marseille, France.
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390 Marseille, France.
| |
Collapse
|
39
|
Matta-Domjan B, King A, Totti S, Matta C, Dover G, Martinez P, Zakhidov A, La Ragione R, Macedo H, Jurewicz I, Dalton A, Velliou EG. Biophysical interactions between pancreatic cancer cells and pristine carbon nanotube substrates: Potential application for pancreatic cancer tissue engineering. J Biomed Mater Res B Appl Biomater 2017; 106:1637-1644. [PMID: 28976640 DOI: 10.1002/jbm.b.34012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/23/2017] [Accepted: 09/17/2017] [Indexed: 12/16/2022]
Abstract
Novel synthetic biomaterials able to support direct tissue growth and retain cellular phenotypical properties are promising building blocks for the development of tissue engineering platforms for accurate and fast therapy screening for cancer. The aim of this study is to validate an aligned, pristine multi-walled carbon nanotube (CNT) platform for in vitro studies of pancreatic cancer as a systematic understanding of interactions between cells and these CNT substrates is lacking. Our results demonstrate that our CNT scaffolds-which are easily tuneable to form sheets/fibers-support growth, proliferation, and spatial organization of pancreatic cancer cells, indicating their great potential in cancer tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1637-1644, 2018.
Collapse
Affiliation(s)
- Brigitta Matta-Domjan
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Alice King
- Department of Physics and Astronomy, School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, UK
| | - Stella Totti
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Csaba Matta
- Department of Veterinary Preclinical Sciences, School of Veterinary Science and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK.,Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - George Dover
- Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Patricia Martinez
- NanoTech Institute, University of Texas at Dallas, Richardson, Texas, 75083-068875080
| | - Anvar Zakhidov
- NanoTech Institute, University of Texas at Dallas, Richardson, Texas, 75083-068875080.,National University of Science and Technology, MISIS, Moscow, 119049, Russia.,Laboratory of Hybrid Nanophotonics and Optoelectronics, Department of Physics and Technology, ITMO University, St. Petersburg, 197101, Russia
| | - Roberto La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Science and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | | | - Izabela Jurewicz
- Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Alan Dalton
- Department of Physics and Astronomy, School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
40
|
Manzur A, Oluwasanmi A, Moss D, Curtis A, Hoskins C. Nanotechnologies in Pancreatic Cancer Therapy. Pharmaceutics 2017; 9:E39. [PMID: 28946666 PMCID: PMC5750645 DOI: 10.3390/pharmaceutics9040039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer has been classified as a cancer of unmet need. After diagnosis the patient prognosis is dismal with few surviving over 5 years. Treatment regimes are highly patient variable and often the patients are too sick to undergo surgical resection or chemotherapy. These chemotherapies are not effective often because patients are diagnosed at late stages and tumour metastasis has occurred. Nanotechnology can be used in order to formulate potent anticancer agents to improve their physicochemical properties such as poor aqueous solubility or prolong circulation times after administration resulting in improved efficacy. Studies have reported the use of nanotechnologies to improve the efficacy of gemcitabine (the current first line treatment) as well as investigating the potential of using other drug molecules which have previously shown promise but were unable to be utilised due to the inability to administer through appropriate routes-often related to solubility. Of the nanotechnologies reported, many can offer site specific targeting to the site of action as well as a plethora of other multifunctional properties such as image guidance and controlled release. This review focuses on the use of the major nanotechnologies both under pre-clinical development and those which have recently been approved for use in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ayesha Manzur
- School of Pharmacy, Institute of Science and Technology for Medicine, Keele University, Keele, Staffordshire ST5 6DB, UK.
| | - Adeolu Oluwasanmi
- School of Pharmacy, Institute of Science and Technology for Medicine, Keele University, Keele, Staffordshire ST5 6DB, UK.
| | - Darren Moss
- School of Pharmacy, Institute of Science and Technology for Medicine, Keele University, Keele, Staffordshire ST5 6DB, UK.
| | - Anthony Curtis
- School of Pharmacy, Institute of Science and Technology for Medicine, Keele University, Keele, Staffordshire ST5 6DB, UK.
| | - Clare Hoskins
- School of Pharmacy, Institute of Science and Technology for Medicine, Keele University, Keele, Staffordshire ST5 6DB, UK.
| |
Collapse
|
41
|
Vasanthan KS, Subramanian A, Krishnan UM, Sethuraman S. Development of Porous Hydrogel Scaffolds with Multiple Cues for Liver Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0034-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Rodríguez-Nogales C, Garbayo E, Martínez-Valbuena I, Sebastián V, Luquin MR, Blanco-Prieto MJ. Development and characterization of polo-like kinase 2 loaded nanoparticles-A novel strategy for (serine-129) phosphorylation of alpha-synuclein. Int J Pharm 2017; 514:142-149. [PMID: 27863657 DOI: 10.1016/j.ijpharm.2016.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/20/2022]
Abstract
Polo like kinase 2 (PLK2), a serine/threonine serum inducible kinase, has been proposed to be the major factor responsible for phosphorylating alpha-synuclein (α-syn) at Serine-129 (Ser-129) in Parkinson's disease (PD). A suitable strategy to gain insights into PLK2's biological effects might be to increase PLK2 intracellular levels with the aim of reproducing the slow progressive neuronal changes that occur in PD. The goal of this study was to develop and characterize a novel drug delivery system (DDS) for PLK2 cytosolic delivery using Total recirculating one machine system (TROMS), a technique capable of encapsulating fragile molecules while maintaining their native properties. A protocol for nanoparticle (NP) preparation using TROMS was set up. NPs showed a mean diameter of 257±15.61nm and zeta potential of -16±2mV, suitable for cell internalization. TEM and SEM images showed individual, spherical, dispersed NPs. The drug entrapment efficacy was 61.86±3.9%. PLK2-NPs were able to enter SH-SY5Y cells and phosphorylate α-syn at Ser-129, demonstrating that the enzyme retained its activity after the NP manufacturing process. This is the first study to develop a DDS for continuous intracellular delivery of PLK2. These promising results indicate that this novel nanotechnology approach could be used to elucidate the biological effects of PLK2 on dopaminergic neurons.
Collapse
Affiliation(s)
- C Rodríguez-Nogales
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain
| | - E Garbayo
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | | | - V Sebastián
- Chemical & Environmental Engineering Department & Nanoscience Institute of Aragon, University of Zaragoza, Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - M R Luquin
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain; Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - M J Blanco-Prieto
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain.
| |
Collapse
|
43
|
Caldas Dos Santos T, Rescignano N, Boff L, Reginatto FH, Simões CMO, de Campos AM, Mijangos C. In vitro antiherpes effect of C-glycosyl flavonoid enriched fraction of Cecropia glaziovii encapsulated in PLGA nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1214-1220. [PMID: 28415409 DOI: 10.1016/j.msec.2017.02.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2016] [Accepted: 02/24/2017] [Indexed: 01/18/2023]
Abstract
In this work is reported a novel and promising approach for the preparation of C-glycosylflavonoid enriched fraction of Cecropia glaziovii (EFF-Cg) loaded PLGA nanoparticles (NP) with antiherpes properties. The purpose of this study was to evaluate and to compare the effect of two nonionic surfactants (poloxamer 188 (PLU) and polyvinyl alcohol (PVA)), and also an emulsion stabilized by solid particles of cellulose nanocrystal (CNC) in place of surfactants. The characterization of these nanoparticles was in terms of size, polydispersity index, zeta potential, morphology, thermogravimetric analysis (TGA), loading capacity and percent yield. Since TGA analysis revealed thermo stability especially for NP-PLU, this formulation was selected for the evaluation of drug release profile, cytotoxicity and antiherpes activity. The drug delivery profile demonstrated a sustained release through the polymer structure and a significant reduction of the polymer molecular weight at 21-day period. The cytotoxicity of these nanoparticles was determined on Vero cells, and the selected formulation did not exhibit cytotoxicity even at the highest tested concentration. The results demonstrated a potential antiherpetic effect of the EFF-Cg loaded NP at 48h of testing. In summary, EFF-Cg loaded NP exhibited a promising system for the effective drug delivery in the treatment of herpes infections.
Collapse
Affiliation(s)
- Talitha Caldas Dos Santos
- Institute of Polymer Science and Technology, ICTP - CSIC, Madrid 28006, Spain; Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040900, Brazil.
| | | | - Laurita Boff
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040900, Brazil.
| | - Flávio Henrique Reginatto
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040900, Brazil.
| | | | - Angela Machado de Campos
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040900, Brazil.
| | - Carmen Mijangos
- Institute of Polymer Science and Technology, ICTP - CSIC, Madrid 28006, Spain.
| |
Collapse
|
44
|
Multi-functional nanoparticles as theranostic agents for the treatment & imaging of pancreatic cancer. Acta Biomater 2017; 49:422-433. [PMID: 27890622 DOI: 10.1016/j.actbio.2016.11.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/02/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023]
Abstract
Theranostics has received considerable attention since both therapy and imaging modalities can be integrated into a single nanocarrier. In this study, fluorescent iron oxide (FIO) nanoparticles and gemcitabine (G) encapsulated poly(lactide-co-glycolide) (PLGA) nanospheres (PGFIO) conjugated with human epidermal growth factor receptor 2, (HER-2) antibody (HER-PGFIO) were prepared and characterized. HER-PGFIO showed the magnetic moment of 10emu/g, relaxivity (r2) of 773mM-1s-1 and specific absorption rate (SAR) of 183W/g. HER-PGFIO showed a sustained release of gemcitabine for 11days in PBS (pH 7.4). In vitro cytotoxicity evaluation of HER-PGFIO in 3D MIAPaCa-2 cultures showed 50% inhibitory concentration (IC50) of 0.11mg/mL. Subcutaneous tumor xenografts of MIAPaCa-2 in SCID mice were developed and the tumor regression study at the end of 30days showed significant tumor regression (86±3%) in the HER-PGFIO with magnetic hyperthermia (MHT) treatment group compared to control group. In vivo MRI imaging showed the enhanced contrast in HER-PGFIO+MHT treated group compared to control. HER-PGFIO showed significant tumor regression and enhanced MRI in treatment groups, which could be an effective nanocarrier system for the treatment of pancreatic cancer. STATEMENT OF SIGNIFICANCE Combination therapies are best suitable to treat pancreatic cancer. Theranostics are the next generation therapeutics with both imaging and treatment agents encapsulated in a single nanocarrier. The novelty of the present work is the development of targeted nanocarrier that provides chemotherapy, thermotherapy and MRI imaging properties. The present work is the next step in developing the nanocarriers for pancreatic cancer treatment. Different treatment modalities embedding into a single nanocarrier is the biggest challenge that was achieved without compromising the functionality of each other. The surface modification of polymeric nanocarriers for antibody binding and their multifunctional abilities will appeal to wider audience.
Collapse
|
45
|
Khare V, Singh A, Mahajan G, Alam N, Kour S, Gupta M, Kumar A, Singh G, Singh SK, Saxena AK, Mondhe DM, Gupta PN. Long-circulatory nanoparticles for gemcitabine delivery: Development and investigation of pharmacokinetics and in-vivo anticancer efficacy. Eur J Pharm Sci 2016; 92:183-93. [DOI: 10.1016/j.ejps.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023]
|
46
|
Dubey RD, Saneja A, Gupta PK, Gupta PN. Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. Eur J Pharm Sci 2016; 93:147-62. [PMID: 27531553 DOI: 10.1016/j.ejps.2016.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Gemcitabine (2',2'-difluoro-2'-deoxycytidine; dFdC) is an efficacious anticancer agent acting against a wide range of solid tumors, including pancreatic, non-small cell lung, bladder, breast, ovarian, thyroid and multiple myelomas. However, short plasma half-life due to metabolism by cytidine deaminase necessitates administration of high dose, which limits its medical applicability. Further, due to its hydrophilic nature, it cannot traverse cell membranes by passive diffusion and, therefore, enters via nucleoside transporters that may lead to drug resistance. To circumvent these limitations, macromolecular prodrugs and nanocarrier-based formulations of Gemcitabine are gaining wide recognition. The nanoformulations based approaches by virtue of their controlled release and targeted delivery have proved to improve bioavailability, increase therapeutic efficacy and reduce adverse effects of the drug. Furthermore, the combination of Gemcitabine with other anticancer agents as well as siRNAs using nanocarriers has also been investigated in order to enhance its therapeutic potential. This review deals with challenges and recent advances in the delivery of Gemcitabine with particular emphasis on macromolecular prodrugs and nanomedicines.
Collapse
Affiliation(s)
- Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Ankit Saneja
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India
| | - Prasoon K Gupta
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi 180001, India.
| |
Collapse
|
47
|
Joshi G, Kumar A, Sawant K. Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles. Drug Deliv 2016; 23:3492-3504. [PMID: 27297453 DOI: 10.1080/10717544.2016.1199605] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Nanoparticles (NPs) can be absorbed via M cells of Peyer's patches after oral delivery leading to passive lymphatic targeting followed by systemic drug delivery. Hence, the study was aimed to formulate PLGA NPs of lopinavir. The NPs were prepared by nanoprecipitation, optimized by 33 factorial design and characterized by TEM, DSC, FTIR studies and safety was assessed by MTT assay. In vivo pharmacokinetic studies were performed in rats. The NPs were discrete spherical structures having particle size of 142.1 ± 2.13 nm and entrapment of 93.03 ± 1.27%. There was absence of drug-polymer interaction. Confocal images revealed the penetration and absorption of coumarin-loaded NPs in Caco-2 cells and intestine after oral delivery. There was 3.04 folds permeability and 13.9 folds bioavailability enhancement from NPs. The NPs can be promising delivery system for antiretroviral drug by delivering the drug to lymph (major HIV reservoir site) via direct absorption through intestine before reaching systemic circulation.
Collapse
Affiliation(s)
- Garima Joshi
- a Pharmacy Department, TIFAC Centre of Relevance and Excellence in NDDS, Centre for PG Studies and Research, M S University of Baroda , Vadodara , Gujarat , India
| | - Abhinesh Kumar
- a Pharmacy Department, TIFAC Centre of Relevance and Excellence in NDDS, Centre for PG Studies and Research, M S University of Baroda , Vadodara , Gujarat , India
| | - Krutika Sawant
- a Pharmacy Department, TIFAC Centre of Relevance and Excellence in NDDS, Centre for PG Studies and Research, M S University of Baroda , Vadodara , Gujarat , India
| |
Collapse
|
48
|
Abstract
The outcomes for treatment of pancreatic cancer have not improved dramatically in many decades. However, the recent promising results with combination chemotherapy regimens for metastatic disease increase optimism for future treatments. With greater control of overt or occult metastatic disease, there will likely be an expanding role for local treatment modalities, especially given that nearly a third of pancreatic cancer patients have locally destructive disease without distant metastatic disease at the time of death. Technical advances have allowed for the safe delivery of dose-escalated radiation therapy, which can then be combined with chemotherapy, targeted agents, immunotherapy, and nanoparticulate drug delivery techniques to produce novel and improved synergistic effects. Here we discuss recent advances and future directions for multimodality therapy in pancreatic cancer.
Collapse
|
49
|
Dai Z, Yu X, Hong J, Liu X, Sun J, Sun X. Development of a novel CsA-PLGA drug delivery system based on a glaucoma drainage device for the prevention of postoperative fibrosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:206-214. [PMID: 27207056 DOI: 10.1016/j.msec.2016.04.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
The formation of a scar after glaucoma surgery often leads to unsuccessful control of intraocular pressure, and should be prevented by using a variety of methods. We designed and developed a novel drug delivery system (DDS) comprising cyclosporine A (CsA) and poly(lactic-co-glycolic acid) (PLGA) based on a glaucoma drainage device (GDD) that can continuously release CsA to prevent postoperative fibrosis following glaucoma surgery. The CsA@PLGA@GDD DDS was observed by field emission scanning electron microscopy and revealed an asymmetric pore structure. Thermogravimetric analysis was performed to measure the weight loss and evaluate the thermal stability of the CsA@PLGA@GDD DDS. The in vitro drug release profile of the DDS was studied using high performance liquid chromatography, which confirmed that the DDS released CsA at a stable rate and maintained adequate CsA concentrations for a relatively long time. The biocompatibility of the DDS and the inhibitory effects on the postoperative fibrosis were investigated in vitro using rabbit Tenon's fibroblasts. The in vivo safety and efficacy of the DDS were examined by implanting the DDS into Tenon's capsules in New Zealand rabbits. Bleb morphology, intraocular pressure, anterior chamber reactions, and anterior chamber angiography were studied at a series of set times. The DDS kept the filtration pathway unblocked for a longer time compared with the control GDD. The results indicate that the CsA@PLGA@GDD DDS represents a safe and effective strategy for preventing scar formation after glaucoma surgery.
Collapse
Affiliation(s)
- Zhaoxing Dai
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Xiaobo Yu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Xi Liu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Jianguo Sun
- Research Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200031, China.
| | - Xinghuai Sun
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| |
Collapse
|
50
|
Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:569-578. [DOI: 10.1016/j.msec.2015.11.067] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
|