1
|
Wu CS, Wu DY, Wang SS. Biodegradable Composite Nanofiber Containing Fish-Scale Extracts. ACS APPLIED BIO MATERIALS 2021; 4:462-469. [PMID: 35014297 DOI: 10.1021/acsabm.0c00955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A biodegradable composite nanofiber containing polyhydroxyalkanoate (PHA) or modified PHA (MPHA) and treated fish-scale powder (TFSP) was prepared and characterized. The powder (20-80 nm) was prepared by grinding after treating FSP with water, acid, and heat (450 °C) to yield the TFSP. Composite nanofibers (100-500 nm long) of TFSP/PHA and TFSP/MPHA were fabricated by electrospinning using a biaxial feed method. The TFSP, which had a high hydroxyapatite content, was suitable as a filler for composites. The Ca/P ratio of the TFSP was similar to that of the human bone. Particle size analysis and analysis of scanning electron microscopy images indicated that, compared with the PHA/TFSP composite, the MPHA/TFSP nanofibers were more uniform and bonded more strongly in the matrix. The tensile strength at failure of the MPHA/TFSP specimens was enhanced and increased with increasing TFSP content. The elongation at failure was lower and decreased with increasing TFSP concentration. The water contact angle decreased with increasing TFSP content in PHA/TFSP and MPHA/TFSP nanofiber membranes. The TFSP enhanced the hydrophilic effect of the PHA/TFSP and MPHA/TFSP nanofiber membranes and provided a more suitable environment for cell growth. This composite nanofiber has potential in many biomedical applications.
Collapse
Affiliation(s)
- Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan 82101, Republic of China
| | - Dung-Yi Wu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shan-Shue Wang
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan 82101, Republic of China
| |
Collapse
|
2
|
Antibacterial properties and cytocompatibility of biobased nanofibers of fish scale gelatine, modified polylactide, and freshwater clam shell. Int J Biol Macromol 2020; 165:1219-1228. [PMID: 33038395 DOI: 10.1016/j.ijbiomac.2020.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 01/13/2023]
Abstract
We report herein new nanofibers prepared from fish scale gelatine (FSG), modified polylactide (MPLA), and a natural antibacterial agent of freshwater clam (Corbicula fluminea Estefanía) shell powder (FCSP). A preparation of FSG from Mullet scales is also described. To improve the biocompatibility and antibacterial activity of the non-woven nanofibers, MPLA/FCSP was added to enhance their antibacterial properties. FSG was then combined with MPLA/FCSP using an electrospinning technique to improve the biocompatibility of the as-fabricated 100-500-nm-diameter non-woven MPLA/FCSP/FSG nanofibers. The resulting tensile properties and morphological characteristics indicated enhanced adhesion among FSG, FCSP, and MPLA in the MPLA/FCSP/FSG nanofibers, as well as improved water resistance and tensile strength, compared with the PLA/FSG nanofibers. MTT assay, cell-cycle, and apoptosis analyses showed that both PLA/FSG and MPLA/FCSP/FSG nanofibers had good biocompatibility. Increasing the FSG content in PLA/FSG and MPLA/FCSP/FSG nanofibers enhanced cell proliferation and free-radical scavenging ability, but did not affect cell viability. Quantitative analysis of bacteria inhibition revealed that FCSP imparts antibacterial activity.
Collapse
|
3
|
Yang C, Huang X, Huang Y, Chen Y, Wang L, Zheng X, Wen H, Dan N, Dan W. Characterization and in vitro experiments of composite membrane materials that polydopamine-loaded on the surface of collagen modified by a novel nanomaterial graphene oxide. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1670396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Changkai Yang
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Xuantao Huang
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Yanping Huang
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Yining Chen
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Lu Wang
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Xin Zheng
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
| | - Huitao Wen
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
- Fujian Key Laboratory of Green Design and Manufacture of Leather, Xingye Leather Technology Co., Ltd, Jinjiang, China
| | - Nianhua Dan
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Weihua Dan
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wu CS. Comparative assessment of the interface between poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and fish scales in composites: Preparation, characterization, and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109878. [PMID: 31499994 DOI: 10.1016/j.msec.2019.109878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/15/2018] [Accepted: 06/08/2019] [Indexed: 12/30/2022]
Abstract
Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites containing fish scales (FSs) were prepared and used in the fabrication of three-dimensional printing filaments. Maleic anhydride (MA)-grafted polyhydroxyalkanoate (PHBV-g-MA) and FS were used to improve the compatibility of FS within a PHBV matrix. Mechanical and morphological characterization indicated that improved adhesion between FS and PHBV-g-MA enhanced the tensile strength of the composite compared with that of PHBV/FS. The PHBV-g-MA/FS composites were also more water-resistant than the PHBV/FS composites. Human foreskin fibroblasts (FBs) were seeded on two series of these composites to assess cytocompatibility. FB proliferation was greater on PHBV/FS composites than on PHBV-g-MA/FS composites. Cell-cycle assays with FBs on PHBV/FS and PHBV-g-MA/FS series composites were unaffected. Moreover, FS enhanced the antioxidant and antimicrobial properties of PHBV-g-MA/FS and PHBV/FS composites, demonstrating the potential of PHBV-g-MA/FS and PHBV/FS composites for biomedical material applications.
Collapse
Affiliation(s)
- Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County 82101, Taiwan, Republic of China.
| |
Collapse
|
5
|
Wu CS, Wu DY, Wang SS. Antibacterial Properties of Biobased Polyester Composites Achieved through Modification with a Thermally Treated Waste Scallop Shell. ACS APPLIED BIO MATERIALS 2019; 2:2262-2270. [DOI: 10.1021/acsabm.9b00205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan 82101, Republic of China
| | - Dung-Yi Wu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Shan-Shue Wang
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County, Taiwan 82101, Republic of China
| |
Collapse
|
6
|
Effect of hydrolyzed collagen on thermal, mechanical and biological properties of poly(lactic acid) bionanocomposites. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00694-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Riaz T, Zeeshan R, Zarif F, Ilyas K, Muhammad N, Safi SZ, Rahim A, Rizvi SAA, Rehman IU. FTIR analysis of natural and synthetic collagen. APPLIED SPECTROSCOPY REVIEWS 2018; 53:703-746. [DOI: 10.1080/05704928.2018.1426595] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
- Tehseen Riaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Faiza Zarif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Kanwal Ilyas
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Syed A. A. Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ihtesham Ur Rehman
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Wu CS, Liao HT. Fabrication, characterization, and application of polyester/wood flour composites. JOURNAL OF POLYMER ENGINEERING 2017. [DOI: 10.1515/polyeng-2016-0284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The mechanical properties, thermal properties, antibacterial activity, and fabrication of three-dimensional (3D) printing strips of composite materials containing polyhydroxyalkanoate (PHA) and wood flour (WF) were evaluated. Maleic anhydride (MA)-grafted PHA (PHA-g-MA) and WF were used to enhance the desired characteristics of these composites. The PHA-g-MA/WF composites had better mechanical properties than the PHA/WF composites did. This effect was attributed to a greater compatibility between the grafted polyester and WF. Additionally, the PHA-g-MA/WF composites provided higher quality 3D printing strips and were more easily processed because of ester formation. The water resistance of the PHA-g-MA/WF composite was greater than that of PHA/WF. Moreover, WF enhanced the antibacterial activity of the composites. Composites of PHA-g-MA or PHA containing WF had better antibacterial activity.
Collapse
|
9
|
Wu CS, Liao HT, Cai YX. Characterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate composites. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.04.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Darie-Niţă RN, Munteanu BS, Tudorachi N, Lipşa R, Stoleru E, Spiridon I, Vasile C. Complex poly(lactic acid)-based biomaterial for urinary catheters: I. Influence of AgNP on properties. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2016. [DOI: 10.1680/jbibn.15.00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study focused on the development of biocompatible antimicrobial/antioxidant biodegradable bionanocomposite renewable resources based on poly(lactic acid) (PLA) plasticised with epoxidised soybean oil. To the main PLA matrix hydrolysed collagen (HC) (to enhance biocompatibility), vitamin E (as antioxidant agent) and silver (Ag) nanoparticles (NPs) (for imparting antimicrobial properties for medical applications and also for active packaging) were incorporated. The blends were produced by using the classical technological flow of melt processing. The presence of the additives in the PLA matrix improved the processability and flexibility and slightly decreased the thermal properties. The specific interactions of silver NPs with the other components of nanocomposites, mainly with HC protein and vitamin E (by ionic and other types of secondary bonds), led to a better HC and vitamin E dispersion in the samples with a higher silver content (1·5%), which further caused the enhancement of the mechanical properties for high silver NP concentration. Therefore, the silver NPs were successfully embedded into the polymer matrix. The aim of this research was to improve the flexibility, biocompatibility and functionality of PLA and to obtain bionanocomposites destined for medical applications such as catheters. This first part of research deals with mechanical and thermal characterisation correlated with morphological features.
Collapse
Affiliation(s)
| | | | - Niţă Tudorachi
- ‘Petru Poni’ Institute of Macromolecular Chemistry, Iași, Romania
| | - Rodica Lipşa
- ‘Petru Poni’ Institute of Macromolecular Chemistry, Iași, Romania
| | - Elena Stoleru
- ‘Petru Poni’ Institute of Macromolecular Chemistry, Iași, Romania
| | - Iuliana Spiridon
- ‘Petru Poni’ Institute of Macromolecular Chemistry, Iași, Romania
| | - Cornelia Vasile
- ‘Petru Poni’ Institute of Macromolecular Chemistry, Iași, Romania
| |
Collapse
|
11
|
Zuber M, Zia F, Zia KM, Tabasum S, Salman M, Sultan N. Collagen based polyurethanes—A review of recent advances and perspective. Int J Biol Macromol 2015; 80:366-74. [DOI: 10.1016/j.ijbiomac.2015.07.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
|