1
|
Lv BH, Xiang HY, Gao S, Guo YX, Yang JH, Zou NF, Zhao X, Li Z, Yang B, Jia N, Yan HL, Zuo L. Realization of Large Low-Stress Elastocaloric Effect in TiZrNbAl Alloy. MATERIALS (BASEL, SWITZERLAND) 2024; 17:885. [PMID: 38399136 PMCID: PMC10889978 DOI: 10.3390/ma17040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Seeking novel high-performance elastocaloric materials with low critical stress plays a crucial role in advancing the development of elastocaloric refrigeration technology. Here, as a first attempt, the elastocaloric effect of TiZrNbAl shape memory alloy at both room temperature and finite temperatures ranging from 245 K to 405 K, is studied systematically. Composition optimization shows that Ti-19Zr-14Nb-1Al (at.%), possessing excellent room-temperature superelasticity with a critical stress of around 100 MPa and a small stress hysteresis of around 70 MPa and outstanding fracture resistance with a compressive strain of 20% and stress of 1.7 GPa, demonstrates a substantial advantage as an elastocaloric refrigerant. At room temperature, a large adiabatic temperature change (ΔTad) of -6.7 K is detected, which is comparable to the highest value reported in the Ti-based alloys. A high elastocaloric cyclic stability, with almost no degradation of ΔTad after 4000 cycles, is observed. Furthermore, the sizeable elastocaloric effect can be steadily expanded from 255 K to 395 K with a temperature window of as large as 140 K. A maximum ΔTad of -7.9 K appears at 355 K. The present work demonstrates a promising potential of TiZrNbAl as a low critical stress and low hysteresis elastocaloric refrigerant.
Collapse
Affiliation(s)
- Bang-He Lv
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| | - Hua-You Xiang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| | - Shang Gao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| | - Yan-Xin Guo
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| | - Jin-Han Yang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| | - Nai-Fu Zou
- Institute of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Xiaoli Zhao
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| | - Zongbin Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| | - Bo Yang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| | - Nan Jia
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| | - Hai-Le Yan
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| | - Liang Zuo
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China (X.Z.); (Z.L.); (L.Z.)
| |
Collapse
|
2
|
Baltatu MS, Vizureanu P, Sandu AV, Solcan C, Hritcu LD, Spataru MC. Research Progress of Titanium-Based Alloys for Medical Devices. Biomedicines 2023; 11:2997. [PMID: 38001997 PMCID: PMC10669585 DOI: 10.3390/biomedicines11112997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Biomaterials are currently a unique class of materials that are essential to improving the standard of human life and extending it. In the assent of the appearance of biomaterials that contain non-toxic elements, in this study, we examine a system of Ti25Mo7Zr15TaxSi (x = 0, 0.5, 0.75, 1 wt.%) for future medical applications. The alloys were developed in a vacuum electric arc furnace and then studied from a structural, mechanical and in vivo assessment (on rabbits) perspective. The effect of the silicon addition was clearly seen in both the structural and the mechanical characteristics, standing out as beta alloys with a dendritic structure and lowering the mechanical properties as a result of the silicon addition. In experimental rabbits, the proliferation of mesenchymal stem cells was observed in the periosteum and peri-implant area, differentiating into osteoblasts and then into osteocytes. Osteoclasts were discovered within the cartilaginous islands that provide structural support to newly formed bone, playing a primary role in bone remodeling. The newly formed spongy tissue adhered to the fibrous capsule that surrounds the alloy, ensuring good osseointegration of metallic implants. The overexpression of Osteopontin, Metalloproteinase-2 (also known as gelatinase A), and Metallopeptidase-9 (also known as gelatinase B) underscores the processes of osteogenesis, bone mineralization, and normal bone remodeling.
Collapse
Affiliation(s)
- Madalina Simona Baltatu
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 41 “D. Mangeron” Street, 700050 Iasi, Romania; (M.S.B.); (A.V.S.)
| | - Petrica Vizureanu
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 41 “D. Mangeron” Street, 700050 Iasi, Romania; (M.S.B.); (A.V.S.)
- Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
| | - Andrei Victor Sandu
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University of Iasi, 41 “D. Mangeron” Street, 700050 Iasi, Romania; (M.S.B.); (A.V.S.)
- Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
- National Institute for Research and Development in Environmental Protection, 294 Splaiul Independentei, 060031 Bucharest, Romania
| | - Carmen Solcan
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Mihail Sadoveanu Street, No 3, 700490 Iasi, Romania; (L.D.H.); (M.C.S.)
| | - Luminița Diana Hritcu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Mihail Sadoveanu Street, No 3, 700490 Iasi, Romania; (L.D.H.); (M.C.S.)
| | - Mihaela Claudia Spataru
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, Mihail Sadoveanu Street, No 3, 700490 Iasi, Romania; (L.D.H.); (M.C.S.)
| |
Collapse
|
3
|
Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S. Improving Biocompatibility for Next Generation of Metallic Implants. PROGRESS IN MATERIALS SCIENCE 2023; 133:101053. [PMID: 36686623 PMCID: PMC9851385 DOI: 10.1016/j.pmatsci.2022.101053] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increasing need for joint replacement surgeries, musculoskeletal repairs, and orthodontics worldwide prompts emerging technologies to evolve with healthcare's changing landscape. Metallic orthopaedic materials have a shared application history with the aerospace industry, making them only partly efficient in the biomedical domain. However, suitability of metallic materials in bone tissue replacements and regenerative therapies remains unchallenged due to their superior mechanical properties, eventhough they are not perfectly biocompatible. Therefore, exploring ways to improve biocompatibility is the most critical step toward designing the next generation of metallic biomaterials. This review discusses methods of improving biocompatibility of metals used in biomedical devices using surface modification, bulk modification, and incorporation of biologics. Our investigation spans multiple length scales, from bulk metals to the effect of microporosities, surface nanoarchitecture, and biomolecules such as DNA incorporation for enhanced biological response in metallic materials. We examine recent technologies such as 3D printing in alloy design and storing surface charge on nanoarchitecture surfaces, metal-on-metal, and ceramic-on-metal coatings to present a coherent and comprehensive understanding of the subject. Finally, we consider the advantages and challenges of metallic biomaterials and identify future directions.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Indranath Mitra
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Stuart B. Goodman
- Department of Orthopedic Surgery, Stanford University Medical Center, Redwood City, CA 94063
| | | | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
4
|
Metallic Implants Used in Lumbar Interbody Fusion. MATERIALS 2022; 15:ma15103650. [PMID: 35629676 PMCID: PMC9146470 DOI: 10.3390/ma15103650] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, pedicle fixation systems have evolved and modifications in spinal fusion techniques have been developed to increase fusion rates and improve clinical outcomes after lumbar interbody fusion (LIF). Regarding materials used for screw and rod manufacturing, metals, especially titanium alloys, are the most popular resources. In the case of pedicle screws, that biomaterial can be also doped with hydroxyapatite, CaP, ECM, or tantalum. Other materials used for rod fabrication include cobalt-chromium alloys and nitinol (nickel-titanium alloy). In terms of mechanical properties, the ideal implant used in LIF should have high tensile and fatigue strength, Young's modulus similar to that of the bone, and should be 100% resistant to corrosion to avoid mechanical failures. On the other hand, a comprehensive understanding of cellular and molecular pathways is essential to identify preferable characteristics of implanted biomaterial to obtain fusion and avoid implant loosening. Implanted material elicits a biological response driven by immune cells at the site of insertion. These reactions are subdivided into innate (primary cellular response with no previous exposure) and adaptive (a specific type of reaction induced after earlier exposure to the antigen) and are responsible for wound healing, fusion, and also adverse reactions, i.e., hypersensitivity. The main purposes of this literature review are to summarize the physical and mechanical properties of metal alloys used for spinal instrumentation in LIF which include fatigue strength, Young's modulus, and corrosion resistance. Moreover, we also focused on describing biological response after their implantation into the human body. Our review paper is mainly focused on titanium, cobalt-chromium, nickel-titanium (nitinol), and stainless steel alloys.
Collapse
|
5
|
Szczęsny G, Kopec M, Politis DJ, Kowalewski ZL, Łazarski A, Szolc T. A Review on Biomaterials for Orthopaedic Surgery and Traumatology: From Past to Present. MATERIALS 2022; 15:ma15103622. [PMID: 35629649 PMCID: PMC9145924 DOI: 10.3390/ma15103622] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023]
Abstract
The principal features essential for the success of an orthopaedic implant are its shape, dimensional accuracy, and adequate mechanical properties. Unlike other manufactured products, chemical stability and toxicity are of increased importance due to the need for biocompatibility over an implants life which could span several years. Thus, the combination of mechanical and biological properties determines the clinical usefulness of biomaterials in orthopaedic and musculoskeletal trauma surgery. Materials commonly used for these applications include stainless steel, cobalt-chromium and titanium alloys, ceramics, polyethylene, and poly(methyl methacrylate) (PMMA) bone cement. This study reviews the properties of commonly used materials and the advantages and disadvantages of each, with special emphasis on the sensitivity, toxicity, irritancy, and possible mutagenic and teratogenic capabilities. In addition, the production and final finishing processes of implants are discussed. Finally, potential directions for future implant development are discussed, with an emphasis on developing advanced personalised implants, according to a patient’s stature and physical requirements.
Collapse
Affiliation(s)
- Grzegorz Szczęsny
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str., 02-005 Warsaw, Poland; (G.S.); (A.Ł.)
| | - Mateusz Kopec
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
- Correspondence:
| | - Denis J. Politis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 20537, Cyprus;
| | - Zbigniew L. Kowalewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
| | - Adam Łazarski
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str., 02-005 Warsaw, Poland; (G.S.); (A.Ł.)
| | - Tomasz Szolc
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
| |
Collapse
|
6
|
Dan A, Angelescu ML, Serban N, Cojocaru EM, Zarnescu-Ivan N, Cojocaru VD, Galbinasu BM. Evolution of Microstructural and Mechanical Properties during Cold-Rolling Deformation of a Biocompatible Ti-Nb-Zr-Ta Alloy. MATERIALS 2022; 15:ma15103580. [PMID: 35629608 PMCID: PMC9143921 DOI: 10.3390/ma15103580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
In this study, a Ti-32.9Nb-4.2Zr-7.5Ta (wt%) titanium alloy was produced by melting in a cold crucible induction in a levitation furnace, and then deforming by cold rolling, with progressive deformation degrees (thickness reduction), from 15% to 60%, in 15% increments. The microstructural characteristics of the specimens in as-received and cold-rolled conditions were determined by XRD and SEM microscopy, while the mechanical characteristics were obtained by tensile and microhardness testing. It was concluded that, in all cases, the Ti-32.9Nb-4.2Zr-7.5Ta (wt%) showed a bimodal microstructure consisting of Ti-β and Ti-α″ phases. Cold deformation induced significant changes in the microstructural and the mechanical properties, leading to grain-refinement, crystalline cell distortions and variations in the weight-fraction ratio of both Ti-β and Ti-α″ phases, as the applied degree of deformation increased from 15% to 60%. Changes in the mechanical properties were also observed: the strength properties (ultimate tensile strength, yield strength and microhardness) increased, while the ductility properties (fracture strain and elastic modulus) decreased, as a result of variations in the weight-fraction ratio, the crystallite size and the strain hardening induced by the progressive cold deformation in the Ti-β and Ti-α″ phases.
Collapse
Affiliation(s)
- Alexandru Dan
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.D.); (M.L.A.); (N.S.); (E.M.C.); (N.Z.-I.)
| | - Mariana Lucia Angelescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.D.); (M.L.A.); (N.S.); (E.M.C.); (N.Z.-I.)
| | - Nicolae Serban
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.D.); (M.L.A.); (N.S.); (E.M.C.); (N.Z.-I.)
| | - Elisabeta Mirela Cojocaru
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.D.); (M.L.A.); (N.S.); (E.M.C.); (N.Z.-I.)
| | - Nicoleta Zarnescu-Ivan
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.D.); (M.L.A.); (N.S.); (E.M.C.); (N.Z.-I.)
| | - Vasile Danut Cojocaru
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.D.); (M.L.A.); (N.S.); (E.M.C.); (N.Z.-I.)
- Correspondence: ; Tel.: +40-21-402-95-31
| | - Bogdan Mihai Galbinasu
- Dental Medicine Faculty, University of Medicine and Pharmacy “Carol Davila” Bucharest, 020021 Bucharest, Romania;
| |
Collapse
|
7
|
Effects of Cold Rolling Deformation and Solution Treatment on Microstructural, Mechanical, and Corrosion Properties of a Biocompatible Ti-Nb-Ta-Zr Alloy. METALS 2022. [DOI: 10.3390/met12020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the most important requirements for a metallic biomaterial is the mechanical biocompatibility, which means excellent mechanical properties—high strength and fatigue strength, but low elastic modulus, to be mechanically harmonized with hard tissues. In order to improve the mechanical and biocompatible performance of the Ti-25.5Nb-4.5Ta-8.0Zr wt% alloy, the influence of cold plastic deformation and solution treatment on its properties were investigated. The Ti-25.5Nb-4.5Ta-8.0Zr wt% alloy was fabricated by melting in a cold crucible furnace (in levitation) and then subjected to several treatment schemes, which include cold rolling and different solution treatments. Microstructural and mechanical characteristics of specimens in as-cast and thermo-mechanically processed condition were determined by SEM microscopy and tensile testing, for different structural states: initial as-cast/as-received, cold rolled and solution treated at different temperatures (800, 900, and 1000 °C) and durations (5, 10, 15, and 20 min), with water quenching. It was concluded that both cold rolling and solution treatment have important positive effects on structural and mechanical properties of the biomaterial, increasing mechanical strength and decreasing the elastic modulus. Samples in different structural states were also corrosion tested and the results provided important information on determining the optimal processing scheme to obtain a high-performance biomaterial. The final processing route chosen consists of a cold rolling deformation with a total deformation degree of 60%, followed by a solution heat treatment at 900 °C with maintenance duration of 5 min and water quenching. By applying this thermo-mechanical processing scheme, the Ti-25.5Nb-4.5Ta-8.0Zr wt% alloy showed an elastic modulus of 56 GPa (5% higher than in the as-cast state), an ultimate tensile strength of 1004 MPa (41.8% higher than in the as-cast state), a yield strength of 718 MPa (40.6% higher than in the as-cast state), and increased corrosion resistance (the corrosion rate decreased by 50% compared to the as-cast state).
Collapse
|
8
|
Wu Y, Li Q, Xu B, Fu H, Li Y. Nano-hydroxyapatite coated TiO 2 nanotubes on Ti-19Zr-10Nb-1Fe alloy promotes osteogenesis in vitro. Colloids Surf B Biointerfaces 2021; 207:112019. [PMID: 34388611 DOI: 10.1016/j.colsurfb.2021.112019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 11/25/2022]
Abstract
Titanium and titanium alloys have broad applications in orthopedic implants due to their excellent mechanical properties and biocompatibility. The biological activity of the metallic implants can be improved by implementing a nano-hydroxyapatite (nano-HA) coating, while it is still challenging to synthesize uniform and stable nano-HA on the metallic materials. The characterization results confirmed that the nanotube array with a diameter of 87 ± 21 nm and a length of 8.1 ± 1.3 μm is achieved by using double anodic oxidation, and then microsphere-like nano-HA crystals are formed on the TiO2 nanotube arrays. Through X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometer (FT-IR) analysis, it is determined that the chemical composition of the coating is hydroxyapatite. in vitro cell experiments, compared to the TZNF metal surface, the TZNF-NTs/HA is beneficial to the proliferation and adhesion of osteoblasts, and the activity of ALP was 6.93 ± 0.47 DEA unit and the content of OCN was 7.04 ± 0.51 ng/L. In terms of the expression of osteogenic gene information as osterix, osteopontin, and osteonectin, the mRNA levels of TZNF-NTs/HA were 2.6-fold, 1.6-fold, and 4.3-fold higher than that of TZNF samples, respectively, at 14 days. The results suggested that the introduction of nano-HA improves osteoblast differentiation and local factor production, as well as indicates the potential for improved implant osseointegration.
Collapse
Affiliation(s)
- Yan Wu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China; Beihang Hangzhou Innovation Institute Yuhang, Beihang University, Hangzhou, 310023, China
| | - Qiquan Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China; Beihang Hangzhou Innovation Institute Yuhang, Beihang University, Hangzhou, 310023, China
| | - Boyang Xu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China; Biomaterials Laboratory of the Medical Device Inspection Institute, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Haiyang Fu
- Biomaterials Laboratory of the Medical Device Inspection Institute, National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yan Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China; Beihang Hangzhou Innovation Institute Yuhang, Beihang University, Hangzhou, 310023, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
9
|
Tailoring a Low Young Modulus for a Beta Titanium Alloy by Combining Severe Plastic Deformation with Solution Treatment. MATERIALS 2021; 14:ma14133467. [PMID: 34206466 PMCID: PMC8269459 DOI: 10.3390/ma14133467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023]
Abstract
The present paper analyzed the microstructural characteristics and the mechanical properties of a Ti-Nb-Zr-Fe-O alloy of β-Ti type obtained by combining severe plastic deformation (SPD), for which the total reduction was of εtot = 90%, with two variants of super-transus solution treatment (ST). The objective was to obtain a low Young's modulus with sufficient high strength in purpose to use the alloy as a biomaterial for orthopedic implants. The microstructure analysis was conducted through X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) investigations. The analyzed mechanical properties reveal promising values for yield strength (YS) and ultimate tensile strength (UTS) of about 770 and 1100 MPa, respectively, with a low value of Young's modulus of about 48-49 GPa. The conclusion is that satisfactory mechanical properties for this type of alloy can be obtained if considering a proper combination of SPD + ST parameters and a suitable content of β-stabilizing alloying elements, especially the Zr/Nb ratio.
Collapse
|
10
|
Gurau C, Gurau G, Mitran V, Dan A, Cimpean A. The Influence of Severe Plastic Deformation on Microstructure and In Vitro Biocompatibility of the New Ti-Nb-Zr-Ta-Fe-O Alloy Composition. MATERIALS 2020; 13:ma13214853. [PMID: 33138165 PMCID: PMC7663053 DOI: 10.3390/ma13214853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
In this work, severe plastic deformation (SPD) of the newly designed Ti-Nb-Zr-Ta-Fe-O GUM metal was successfully conducted at room temperature using high speed high pressure torsion (HSHPT) followed by cold rolling (CR) to exploit the suitability of the processed alloy for bone staples. The Ti-31.5Nb-3.1Zr-3.1Ta-0.9Fe-0.16O GUM alloy was fabricated in a levitation melting furnace using a cold crucible and argon protective atmosphere. The as-cast specimens were subjected to SPD, specifically HSHPT, and then processed by the CR method to take the advantages of both grain refinement and larger dimensions. This approach creates the opportunity to obtain temporary orthopedic implants nanostructured by SPD. The changes induced by HSHPT technology from the coarse dendrite directly into the ultrafine grained structure were examined by optical microscopy, scanning electron microscopy and X-ray diffraction. The structural investigations showed that by increasing the deformation, a high density of grain boundaries is accumulated, leading gradually to fine grain size. In addition, the in vitro biocompatibility studies were conducted in parallel on the GUM alloy specimens in the as-cast state, and after HSHPT- and HSHPT+CR- processing. For comparative purposes, in vitro behavior of the bone-derived MC3T3-E1 cells on the commercially pure titanium has also been investigated regarding the viability and proliferation, morphology and osteogenic differentiation. The results obtained support the appropriateness of the HSHPT technology for developing compression staples able to ensure a better fixation of bone fragments.
Collapse
Affiliation(s)
- Carmela Gurau
- Faculty of Engineering, “Dunărea de Jos” University of Galati, Domnească Street 47, 800008 Galati, Romania; (C.G.); (G.G.)
| | - Gheorghe Gurau
- Faculty of Engineering, “Dunărea de Jos” University of Galati, Domnească Street 47, 800008 Galati, Romania; (C.G.); (G.G.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Alexandru Dan
- R&D Consultanta si Servicii, 45 Maria Ghiculeasa, 020943 Bucharest, Romania;
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
11
|
Abstract
β-type titanium (Ti) alloys have attracted a lot of attention as novel biomedical materials in the past decades due to their low elastic moduli and good biocompatibility. This article provides a broad and extensive review of β-type Ti alloys in terms of alloy design, preparation methods, mechanical properties, corrosion behavior, and biocompatibility. After briefly introducing the development of Ti and Ti alloys for biomedical applications, this article reviews the design of β-type Ti alloys from the perspective of the molybdenum equivalency (Moeq) method and DV-Xα molecular orbital method. Based on these methods, a considerable number of β-type Ti alloys are developed. Although β-type Ti alloys have lower elastic moduli compared with other types of Ti alloys, they still possess higher elastic moduli than human bones. Therefore, porous β-type Ti alloys with declined elastic modulus have been developed by some preparation methods, such as powder metallurgy, additive manufacture and so on. As reviewed, β-type Ti alloys have comparable or even better mechanical properties, corrosion behavior, and biocompatibility compared with other types of Ti alloys. Hence, β-type Ti alloys are the more suitable materials used as implant materials. However, there are still some problems with β-type Ti alloys, such as biological inertness. As such, summarizing the findings from the current literature, suggestions forβ-type Ti alloys with bioactive coatings are proposed for the future development.
Collapse
|
12
|
Abstract
The topic of titanium alloys for dental implants has been reviewed. The basis of the review was a search using PubMed, with the large number of references identified being reduced to a manageable number by concentrating on more recent articles and reports of biocompatibility and of implant durability. Implants made mainly from titanium have been used for the fabrication of dental implants since around 1981. The main alloys are so-called commercially pure titanium (cpTi) and Ti-6Al-4V, both of which give clinical success rates of up to 99% at 10 years. Both alloys are biocompatible in contact with bone and the gingival tissues, and are capable of undergoing osseointegration. Investigations of novel titanium alloys developed for orthopaedics show that they offer few advantages as dental implants. The main findings of this review are that the alloys cpTi and Ti-6Al-4V are highly satisfactory materials, and that there is little scope for improvement as far as dentistry is concerned. The conclusion is that these materials will continue to be used for dental implants well into the foreseeable future.
Collapse
|
13
|
Design and fabrication of a Nb/NiTi superelastic composite with high critical stress for inducing martensitic transformation and large recoverable strain for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110894. [PMID: 32409049 DOI: 10.1016/j.msec.2020.110894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/01/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
A novel Nb/NiTi superelastic composite with a shell-core structure was designed and fabricated to achieve a combination of biocompatibility and superelasticity (large recoverable strain ε accompanied by high critical stress for inducing martensitic transformation σSIM). The good biocompatibility is mainly attributed to the outer non-cytotoxic Nb shell that prevents inner NiTi core from direct contact with cells. Meanwhile, the inner NiTi core endows the composite with superelasticity through a fully reversible stress-induced martensitic transformation between B2 parent phase and B19' martensite. These results might shed some light on design and development of novel superelastic composites for biomedical applications.
Collapse
|
14
|
Al-Zain Y, Yamamoto A, AlAjlouni JM, Al-Abbadi MA, Al-Sayyed MR, Aloweidi AS, Kim HY, Miyazaki S. Corrosion behavior, in vitro and in vivo biocompatibility of a newly developed Ti-16Nb-3Mo-1Sn superelastic alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109906. [PMID: 31499953 DOI: 10.1016/j.msec.2019.109906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022]
Abstract
The biocompatibility of a recently developed Ni-free Ti-16Nb-3Mo-1Sn (at.%) superelastic alloy was investigated both in vitro and in vivo. In addition, static water contact angle (WCA) and electrochemical tests were carried out. Commercial purity Ti (cp-Ti), which is already being used as a clinical material, was used as the control material. The alloy showed a stable corrosion behavior similar to that of the cp-Ti. The WCA measurements showed that the alloy exhibited hydrophilic properties that contributed to cell attachment to implants, as evident by the cytocompatibility tests. According to the in vivo implantation tests conducted on 30 adult BALB/c rats for periods up to 12 weeks, the tissue reaction around the implants was similar for both the cp-Ti and the alloy, and no significant difference was found in almost all parameters analyzed. Due to its stable superelastic properties accompanied with excellent biocompatibility and high corrosion resistance, we believe that this alloy is considered as a promising substitute for the biomedical materials containing Ni or other toxic elements.
Collapse
Affiliation(s)
- Yazan Al-Zain
- Department of Industrial Engineering, The University of Jordan, Amman 11942, Jordan.
| | - Akiko Yamamoto
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Jihad M AlAjlouni
- Department of Orthopaedic Surgery, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mousa A Al-Abbadi
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Manar R Al-Sayyed
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Abdelkarim S Aloweidi
- Department of Anesthesia and Intensive Care, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Hee Young Kim
- Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.
| | - Shuichi Miyazaki
- Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan; Foundation for Advancement of International Science, Tsukuba, Ibaraki 305-0821, Japan.
| |
Collapse
|
15
|
Hussein MA, Kumar M, Drew R, Al-Aqeeli N. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid. MATERIALS 2017; 11:ma11010026. [PMID: 29280956 PMCID: PMC5793524 DOI: 10.3390/ma11010026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF). The effect of the SPS's temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and TEM (Transmission Electron Microscope). The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy). The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO₂, Ti₂O₃, ZrO₂, Nb₂O₅, and a Ca₃(PO₄)₂ compound (precursor of hydroxyapatite) deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material.
Collapse
Affiliation(s)
- Mohamed A Hussein
- Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Madhan Kumar
- Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Robin Drew
- Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Nasser Al-Aqeeli
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
16
|
From Porous to Dense Nanostructured β-Ti alloys through High-Pressure Torsion. Sci Rep 2017; 7:13618. [PMID: 29051519 PMCID: PMC5648878 DOI: 10.1038/s41598-017-13074-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022] Open
Abstract
β-Ti alloys have low elastic modulus, good specific strength and high corrosion resistance for biomaterial applications. Noble elements, such as Nb, Ta and Mo, are used to obtain β-Ti due to their chemical biocompatibility. However, due to their refractory nature, β-Ti requires specific processing routes. Powder metallurgy (P/M) allows for the development of new β-Ti alloys with decreasing costs, but dealing with high-elemental-content alloys can lead to a lack of diffusion and grain growth. One method to refine the structure and improve mechanical properties is a severe plastic deformation technique through high-pressure torsion (HPT). The aim of this work was to evaluate the conversion of P/M porous β-Ti-35Nb-10Ta-xFe alloys to dense nanostructures through high-pressure torsion in one deformation step and the influence of the structure variation on the properties and microstructure. TEM analysis and ASTAR crystallographic mapping was utilized to characterize the nanostructures, and the properties of P/M β Ti-35Nb-10Ta-xFe alloys processed by HPT were compared. The initial microstructure consisted mainly by the β-Ti phase with some α-Ti phase at the grain boundaries. The HPT process refined the microstructure from 50 µm (P/M) down to nanostructured grains of approximately 50 nm.
Collapse
|
17
|
Wang Z, Huang W, Li Y, He H, Zhou Y, Zheng Z. Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Ringer's solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1094-1102. [DOI: 10.1016/j.msec.2017.03.206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/22/2017] [Indexed: 11/29/2022]
|
18
|
Lin J, Ozan S, Munir K, Wang K, Tong X, Li Y, Li G, Wen C. Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti–Ta–Hf–Zr alloy. RSC Adv 2017. [DOI: 10.1039/c6ra28464g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A β type TTHZ alloy (Ti–40Ta–22Hf–11.7Zr) experienced various phase transitions during solution and aging treatments, and the different phases of the alloy significantly influenced its mechanical properties and corrosion behaviour.
Collapse
Affiliation(s)
- Jixing Lin
- College of Materials Science and Engineering
- Jilin University
- Changchun
- China
- Advanced Material Research and Development Center
| | - Sertan Ozan
- Department of Mechanical Engineering
- Bozok University
- Turkey
| | - Khurram Munir
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - Kun Wang
- Advanced Material Research and Development Center
- Zhejiang Industry & Trade Vocational College
- Wenzhou
- China
| | - Xian Tong
- Advanced Material Research and Development Center
- Zhejiang Industry & Trade Vocational College
- Wenzhou
- China
| | - Yuncang Li
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - Guangyu Li
- College of Materials Science and Engineering
- Jilin University
- Changchun
- China
| | - Cuie Wen
- School of Engineering
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
19
|
Lin J, Ozan S, Li Y, Ping D, Tong X, Li G, Wen C. Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications. Sci Rep 2016; 6:37901. [PMID: 27897215 PMCID: PMC5126583 DOI: 10.1038/srep37901] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022] Open
Abstract
Titanium alloys are receiving increasing research interest for the development of metallic stent materials due to their excellent biocompatibility, corrosion resistance, non-magnetism and radiopacity. In this study, a new series of Ti-Ta-Hf-Zr (TTHZ) alloys including Ti-37Ta-26Hf-13Zr, Ti-40Ta-22Hf-11.7Zr and Ti-45Ta-18.4Hf-10Zr (wt.%) were designed using the d-electron theory combined with electron to atom ratio (e/a) and molybdenum equivalence (Moeq) approaches. The microstructure of the TTHZ alloys were investigated using optical microscopy, XRD, SEM and TEM and the mechanical properties were tested using a Vickers micro-indenter, compression and tensile testing machines. The cytocompatibility of the alloys was assessed using osteoblast-like cells in vitro. The as-cast TTHZ alloys consisted of primarily β and ω nanoparticles and their tensile strength, yield strength, Young's modulus and elastic admissible strain were measured as being between 1000.7-1172.8 MPa, 1000.7-1132.2 MPa, 71.7-79.1 GPa and 1.32-1.58%, respectively. The compressive yield strength of the as-cast alloys ranged from 1137.0 to 1158.0 MPa. The TTHZ alloys exhibited excellent cytocompatibility as indicated by their high cell viability ratios, which were close to that of CP-Ti. The TTHZ alloys can be anticipated to be promising metallic stent materials by virtue of the unique combination of extraordinarily high elastic admissible strain, high mechanical strength and excellent biocompatibility.
Collapse
Affiliation(s)
- Jixing Lin
- College of Materials Science and Engineering, Jilin University, Jilin
130025, China
- Advanced Material Research and Development Center, Zhejiang Industry & Trade Vocational College, Zhejiang
325003, China
| | - Sertan Ozan
- Department of Mechanical Engineering, Bozok University, Yozgat
66100, Turkey
| | - Yuncang Li
- School of Engineering, RMIT University, Victoria
3083, Australia
| | - Dehai Ping
- National Institute for Materials Science, Tsukuba
3050047, Japan
| | - Xian Tong
- Advanced Material Research and Development Center, Zhejiang Industry & Trade Vocational College, Zhejiang
325003, China
| | - Guangyu Li
- College of Materials Science and Engineering, Jilin University, Jilin
130025, China
| | - Cuie Wen
- School of Engineering, RMIT University, Victoria
3083, Australia
| |
Collapse
|
20
|
Wang Z, Li Y, Huang W, Chen X, He H. Micro-abrasion–corrosion behaviour of a biomedical Ti–25Nb–3Mo–3Zr–2Sn alloy in simulated physiological fluid. J Mech Behav Biomed Mater 2016; 63:361-374. [DOI: 10.1016/j.jmbbm.2016.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/25/2016] [Accepted: 07/08/2016] [Indexed: 11/26/2022]
|
21
|
In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:60-66. [PMID: 27987750 DOI: 10.1016/j.msec.2016.09.086] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/04/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
Abstract
The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe81Ga19, (Fe81Ga19)98B2 and (Fe81Ga19)99.5(TaC)0.5, and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D03 phases were detected for the three types of Fe-Ga alloys, and additional Fe2B and TaC phases were found in the (Fe81Ga19)98B2 and (Fe81Ga19)99.5(TaC)0.5 alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe81Ga19 alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4h and 24h.
Collapse
|
22
|
New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2908570. [PMID: 26885506 PMCID: PMC4738729 DOI: 10.1155/2016/2908570] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022]
Abstract
Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world.
Collapse
|
23
|
Sheremetyev V, Brailovski V, Prokoshkin S, Inaekyan K, Dubinskiy S. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:935-44. [DOI: 10.1016/j.msec.2015.09.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/04/2015] [Accepted: 09/13/2015] [Indexed: 10/23/2022]
|
24
|
Biological Behaviour and Enhanced Anticorrosive Performance of the Nitrided Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:261802. [PMID: 26583096 PMCID: PMC4637020 DOI: 10.1155/2015/261802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022]
Abstract
The influence of gas nitriding surface treatment on the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy was evaluated. A thorough characterization of bare and nitrided Ti-based alloy and pure Ti was performed in terms of surface film composition and morphology, electrochemical behaviour, and short term osteoblast response. XPS analysis showed that the nitriding treatment strongly influenced the composition (nitrides and oxynitrides) and surface properties both of the substrate and of the bulk alloy. SEM images revealed that the nitrided surface appears as a similar dotted pattern caused by the formation of N-rich domains coexisting with less nitrided domains, while before treatment only topographical features could be observed. All the electrochemical results confirmed the high chemical stability of the nitride and oxynitride coating and the superiority of the applied treatment. The values of the corrosion parameters ascertained the excellent corrosion resistance of the coated alloy in the real functional conditions from the human body. Cell culture experiments with MG63 osteoblasts demonstrated that the studied biomaterials do not elicit any toxic effects and support cell adhesion and enhanced cell proliferation. Altogether, these data indicate that the nitrided Ti-23Nb-0.7Ta-2Zr-0.5N alloy is the most suitable substrate for application in bone implantology.
Collapse
|
25
|
Kopova I, Stráský J, Harcuba P, Landa M, Janeček M, Bačákova L. Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:230-238. [PMID: 26706526 DOI: 10.1016/j.msec.2015.11.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 08/16/2015] [Accepted: 11/16/2015] [Indexed: 01/30/2023]
Abstract
Beta titanium alloys are promising materials for load-bearing orthopaedic implants due to their excellent corrosion resistance and biocompatibility, low elastic modulus and moderate strength. Metastable beta-Ti alloys can be hardened via precipitation of the alpha phase; however, this has an adverse effect on the elastic modulus. Small amounts of Fe (0-2 wt.%) and Si (0-1 wt.%) were added to Ti-35Nb-7Zr-6Ta (TNZT) biocompatible alloy to increase its strength in beta solution treated condition. Fe and Si additions were shown to cause a significant increase in tensile strength and also in the elastic modulus (from 65 GPa to 85 GPa). However, the elastic modulus of TNZT alloy with Fe and Si additions is still much lower than that of widely used Ti-6Al-4V alloy (115 GPa), and thus closer to that of the bone (10-30 GPa). Si decreases the elongation to failure, whereas Fe increases the uniform elongation thanks to increased work hardening. Primary human osteoblasts cultivated for 21 days on TNZT with 0.5Si+2Fe (wt.%) reached a significantly higher cell population density and significantly higher collagen I production than cells cultured on the standard Ti-6Al-4V alloy. In conclusion, the Ti-35Nb-7Zr-6Ta-2Fe-0.5Si alloy proves to be the best combination of elastic modulus, strength and also biological properties, which makes it a viable candidate for use in load-bearing implants.
Collapse
Affiliation(s)
- Ivana Kopova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, , Czech Republic.
| | - Josef Stráský
- Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Petr Harcuba
- Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Michal Landa
- Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Dolejskova 5, 182 00 Prague 8, Czech Republic
| | - Miloš Janeček
- Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Lucie Bačákova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, , Czech Republic
| |
Collapse
|