1
|
Chen YZ, Huang Y, Lü XY. Molecular mechanism of a novel root-end filling material containing zirconium oxide on the osteogenic/odontogenic differentiation of human osteosarcoma MG-63 cells. Front Bioeng Biotechnol 2023; 11:1269246. [PMID: 37901837 PMCID: PMC10613028 DOI: 10.3389/fbioe.2023.1269246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Although the novel root-end filling material containing zirconium oxide (NRFM-Zr) which is hydroxyapatite-based may promote osteoblast differentiation, the molecular mechanism remains unclear. The aim of this study is to investigate it underlying the osteogenic/odontogenic differentiation of human osteosarcoma MG-63 cells induced by NRFM-Zr, compared with calcium silicate-based mineral trioxide aggregate (MTA), and glass ionomer cement (GIC). Firstly, three different types of root filling materials were co-cultured with MG-63 cells, and their cell toxicity, alkaline phosphatase (ALP) activity, and calcium ion concentration were evaluated. Next, gene expression profiling microarray was employed to analyze the impact of the materials on the gene expression profile of MG-63 cells. The results of cell viability revealed that NRFM-Zr group had no significant difference compared to the negative control group. After 5 and 7 days of cultivation, both the NRFM-Zr and MTA groups exhibited significantly higher ALP activity compared to the negative control (p < 0.05). Moreover, the NRFM-Zr group had the highest calcium ion concentration, while the GIC group was the lowest (p < 0.05). Gene expression profiling microarray analysis identified 2915 (NRFM-Zr), 2254 (MTA) and 392 (GIC) differentially expressed genes, respectively. GO functional and KEGG pathway analysis revealed that differentially expressed genes of NRFM-Zr, MTA and GIC participated in 8, 6 and 0 differentiation-related pathways, respectively. Comparing the molecular mechanisms of osteogenic/odontogenic differentiation induced by hydroxyapatite-based NRFM-Zr and calcium silicate-based MTA, it was found that they shared similarities in their molecular mechanisms of promoting osteogenic differentiation. NRFM-Zr primarily promotes differentiation and inhibits cell apoptosis, thereby enhancing osteogenic/odontogenic differentiation of MG-63 cells. Furthermore, the inducing efficacy of NRFM-Zr was found to be superior to MTA.
Collapse
Affiliation(s)
- Yao-Zhong Chen
- Department of Operative Dentistry and Endodontics, Zhongda Hospital, Medical College, Southeast University, Nanjing, China
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiao-Ying Lü
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
2
|
Chumpraman A, Tannukit S, Chotigeat W, Kedjarune-Leggat U. Biocompatibility and mineralization activity of modified glass ionomer cement in human dental pulp stem cells. J Dent Sci 2023; 18:1055-1061. [PMID: 37404606 PMCID: PMC10316452 DOI: 10.1016/j.jds.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background/purpose Fortilin is a multi-functional protein involved in several cellular processes. It has been shown promising potential to be a bioactive molecule that can be incorporated in the dental materials. This study aimed to compare the biocompatibility and mineralization activities of modified glass ionomer cement (Bio-GIC) and Biodentine by direct and indirect method on human dental pulp stem cells (hDPSCs). Materials and methods Conventional glass ionomer cement (GIC), Bio-GIC (GIC supplemented with chitosan, tricalcium phosphate, and recombinant fortilin from Fenneropenaeus merguiensis), and Biodentine were examined in this study. Recombinant fortilin was purified and tested for its cytotoxicity by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assay. Human DPSCs were treated with different material eluate for particular time intervals. At given time points, viability of hDPSCs was examined using MTT assay and calcium deposition was assessed by Alizarin red staining assay. Comparisons of the data among groups were analyzed by analysis of variance and Tukey's multiple comparisons. Results All test materials demonstrated no cytotoxicity. In addition, Bio-GIC promoted cell proliferation at 72 h. For direct and indirect method, cells treated with Bio-GIC demonstrated significantly higher calcium deposition than other groups (P < 0.05). Conclusion Bio-GIC and Biodentine are not cytotoxic to hDPSCs. Bio-GIC demonstrates enhanced calcium deposition comparable to Biodentine. Bio-GIC may be further developed as a bioactive material for dentin regeneration.
Collapse
Affiliation(s)
- Apisit Chumpraman
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
- Cell Biology and Biomaterial Research Unit, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Wilaiwan Chotigeat
- Biological Science Division, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
- Cell Biology and Biomaterial Research Unit, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
3
|
Sangsuwan P, Tannukit S, Chotigeat W, Kedjarune-Leggat U. Biological Activities of Glass Ionomer Cement Supplemented with Fortilin on Human Dental Pulp Stem Cells. J Funct Biomater 2022; 13:jfb13030132. [PMID: 36135566 PMCID: PMC9504290 DOI: 10.3390/jfb13030132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to determine the most suitable recombinant fortilin and evaluate the biological activities of glass ionomer cement (GIC) incorporated with fortilin on human dental pulp stem cells (hDPSCs). Full-length and three fragments of Penaeus merguiensis fortilin were cloned and examined for their proliferative and cytoprotective effects on hDPSCs by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Human DPSCs were cultured with GIC supplemented with fortilin, tricalcium phosphate, or a combination of tricalcium phosphate and fortilin, designated as GIC + FL, GIC + TCP, and GIC + TCP + FL, respectively (n = 4 for each group). At given time points, hDPSCs were harvested and analyzed by MTT, quantitative reverse transcription polymerase chain reaction, alkaline phosphatase activity, and Alizarin Red assays. The full-length fortilin promoted cell proliferation and significantly increased cell survival. This protein was subsequently added into the GIC along with tricalcium phosphate to investigate the biological activities. All experimental groups showed reduced cell viability after treatment with modified GICs on days 1 and 3. The GIC + TCP + FL group significantly promoted odontoblastic differentiation at particular time points. In addition, alkaline phosphatase activity and calcium phosphate deposit were markedly increased in the GIC + TCP + FL group. Among all experimental groups, the GIC incorporated with fortilin and tricalcium phosphate demonstrated the best results on odontogenic differentiation and mineral deposition in hDPSCs.
Collapse
Affiliation(s)
- Prawichaya Sangsuwan
- Molecular Biology and Bioinformatics Program, Faculty of Science, Biological Science Division, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
- Cell Biology and Biomaterial Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence:
| | - Wilaiwan Chotigeat
- Molecular Biology and Bioinformatics Program, Faculty of Science, Biological Science Division, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
- Cell Biology and Biomaterial Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
4
|
Sangsuwan P, Chotigeat W, Tannukit S, Kedjarune-Leggat U. Long-Term Effect of Modified Glass Ionomer Cement with Mimicked Biological Property of Recombinant Translationally Controlled Protein. Polymers (Basel) 2022; 14:polym14163341. [PMID: 36015596 PMCID: PMC9412370 DOI: 10.3390/polym14163341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
This study modified glass ionomer cement (GIC) by adding mimicked biological molecules to reduce cell death. GIC was modified to BIOGIC by adding chitosan and bovine serum albumin for enhancing protein release. The BIOGIC was supplemented with tricalcium phosphate (TCP) and recombinant translationally controlled tumor protein (TCTP) to improve its biological properties. Four groups of materials, GIC, BIOGIC, BIOGIC+TCP, and BIOGIC + TCP + TCTP, were examined by XRD and SEM-EDX. TCTP released from the specimens was determined by an ELISA method. Human dental pulp stem cells (hDPSCs) were harvested and analyzed by MTT assay, apoptosis, gene expression, and cell differentiation. All groups had the same crystallization characteristic peaks of La2O3. The elemental compositions composed of La, Si, and Al are the main inorganic components. The results show that BIOGIC + TCP + TCTP presented significantly higher percentages of cell viability than other groups on day 1 to day 23 (p < 0.05), but were not different after day 24 to day 41 and had reduced cell apoptosis including BAX, TPT1, BCL-2, and Caspase-3. The BIOGIC + TCP + TCTP demonstrated higher odontoblast mineralization and differentiation markers including ALP activity, DSPP, DMP-1, ALP, BMP-2, and OPN. It enhanced cell proliferation and differentiation as well as mineralization with down-regulation of genes related to apoptosis compared with other groups.
Collapse
Affiliation(s)
- Prawichaya Sangsuwan
- Molecular Biology and Bioinformatics Program, Biological Science Division, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Wilaiwan Chotigeat
- Molecular Biology and Bioinformatics Program, Biological Science Division, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sissada Tannukit
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Cell Biology and Biomaterials Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Cell Biology and Biomaterials Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Correspondence:
| |
Collapse
|
5
|
Gremski LH, Matsubara FH, Polli NLC, Antunes BC, Schluga PHDC, da Justa HC, Minozzo JC, Wille ACM, Senff-Ribeiro A, Veiga SS. Prospective Use of Brown Spider Venom Toxins as Therapeutic and Biotechnological Inputs. Front Mol Biosci 2021; 8:706704. [PMID: 34222343 PMCID: PMC8247472 DOI: 10.3389/fmolb.2021.706704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Brown spider (genus Loxosceles) venoms are mainly composed of protein toxins used for predation and defense. Bites of these spiders most commonly produce a local dermonecrotic lesion with gravitational spread, edema and hemorrhage, which together are defined as cutaneous loxoscelism. Systemic loxoscelism, such as hematological abnormalities and renal injury, are less frequent but more lethal. Some Loxosceles venom toxins have already been isolated and extensively studied, such as phospholipases D (PLDs), which have been recombinantly expressed and were proven to reproduce toxic activities associated to the whole venom. PLDs have a notable potential to be engineered and converted in non-toxic antigens to produce a new generation of antivenoms or vaccines. PLDs also can serve as tools to discover inhibitors to be used as therapeutic agents. Other Loxosceles toxins have been identified and functionally characterized, such as hyaluronidases, allergen factor, serpin, TCTP and knottins (ICK peptides). All these toxins were produced as recombinant molecules and are biologically active molecules that can be used as tools for the potential development of chemical candidates to tackle many medical and biological threats, acting, for instance, as antitumoral, insecticides, analgesic, antigens for allergy tests and biochemical reagents for cell studies. In addition, these recombinant toxins may be useful to develop a rational therapy for loxoscelism. This review summarizes the main candidates for the development of drugs and biotechnological inputs that have been described in Brown spider venoms.
Collapse
Affiliation(s)
| | | | | | - Bruno Cesar Antunes
- Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil.,Production and Research Center of Immunobiological Products, State Department of Health, Piraquara, Brazil
| | | | | | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products, State Department of Health, Piraquara, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | | |
Collapse
|
6
|
Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, Yousefi M, Tanomand A, Yousefi B, Mahmoudi S, Kafil HS. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020; 162:956-974. [DOI: 10.1016/j.ijbiomac.2020.06.211] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
|
7
|
Kedjarune-Leggat U, Saetan U, Khongsaengkaeo A, Suwannarat S, Deachamag P, Wonglapsuwan M, Pornprasit R, Thongkamwitoon W, Phumklai P, Chaichanan J, Chotigeat W. Biological activities of a recombinant fortilin from Fenneropenaeus merguiensis. PLoS One 2020; 15:e0239672. [PMID: 33002062 PMCID: PMC7529305 DOI: 10.1371/journal.pone.0239672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/11/2020] [Indexed: 01/27/2023] Open
Abstract
Human Fortilin, an antiapoptotic protein, has also been implicated in several diseases; however, several potential uses of fortilin have also been proposed. Bearing the implications of fortilin in mind, fortilin analog, which has no complication with diseases, is required. Since a recombinant full-length fortilin from Fenneropenaeus merguiensis (rFm-Fortilin (FL)) reported only 44% (3e-27) homologous to human fortilin, therefore the biological activities of the Fm-Fortilin (FL) and its fragments (F2, F12, and F23) were investigated for potential use against HEMA toxicity from filling cement to pulp cell. The rFm-Fortilin FL, F2, 12, and F23 were expressed and assayed for proliferation activity. The rFm-Fortilin (FL) showed proliferation activity on human dental pulp cells (HDPCs) and protected the cells from 2-hydroxy-ethyl methacrylate (HEMA) at 1-20 ng/ml. In contrast, none of the rFm-Fortilin fragments promoted HDPC growth that may be due to a lack of three conserved amino acid residues together for binding with the surface of Rab GTPase for proliferative activity. In addition, rFm-Fortilin (FL) activated mineralization and trend to suppressed production of proinflammatory cytokines, including histamine (at 10 ng/ml) and TNF-α (at 100 ng/ml). Besides, the rFm-Fortilin (FL) did not mutate the Chinese hamster ovary (CHO) cell. Therefore, the rFm-Fortilin (FL) has the potential use as a supplementary medical material to promote cell proliferation in patients suffering severe tooth decay and other conditions.
Collapse
Affiliation(s)
- Ureporn Kedjarune-Leggat
- Department of Oral Biology, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Uraipan Saetan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Anchana Khongsaengkaeo
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Sudarat Suwannarat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Panchalika Deachamag
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Monwadee Wonglapsuwan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Rawiwan Pornprasit
- Mahidol University-Bio Innovation Building, Mahidol University, Nakhon Pathom, Thailand
| | | | - Parujee Phumklai
- Mahidol University-Bio Innovation Building, Mahidol University, Nakhon Pathom, Thailand
| | - Jirapan Chaichanan
- Mahidol University-Bio Innovation Building, Mahidol University, Nakhon Pathom, Thailand
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
- * E-mail:
| |
Collapse
|
8
|
Brown Spider ( Loxosceles) Venom Toxins as Potential Biotools for the Development of Novel Therapeutics. Toxins (Basel) 2019; 11:toxins11060355. [PMID: 31248109 PMCID: PMC6628458 DOI: 10.3390/toxins11060355] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
Brown spider envenomation results in dermonecrosis with gravitational spreading characterized by a marked inflammatory reaction and with lower prevalence of systemic manifestations such as renal failure and hematological disturbances. Several toxins make up the venom of these species, and they are mainly peptides and proteins ranging from 5–40 kDa. The venoms have three major families of toxins: phospholipases-D, astacin-like metalloproteases, and the inhibitor cystine knot (ICK) peptides. Serine proteases, serpins, hyaluronidases, venom allergens, and a translationally controlled tumor protein (TCTP) are also present. Toxins hold essential biological properties that enable interactions with a range of distinct molecular targets. Therefore, the application of toxins as research tools and clinical products motivates repurposing their uses of interest. This review aims to discuss possibilities for brown spider venom toxins as putative models for designing molecules likely for therapeutics based on the status quo of brown spider venoms. Herein, we explore new possibilities for the venom components in the context of their biochemical and biological features, likewise their cellular targets, three-dimensional structures, and mechanisms of action.
Collapse
|