1
|
Parshina A, Yelnikova A, Safronova E, Kolganova T, Bobreshova O, Yaroslavtsev A. Potentiometric Sensor Arrays Based on Hybrid PFSA/CNTs Membranes for the Analysis of UV-Degraded Drugs. Polymers (Basel) 2023; 15:2682. [PMID: 37376327 DOI: 10.3390/polym15122682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The degradation of drugs is a substantial problem since it affects the safety and effectiveness of pharmaceutical products, as well as their influence on the environment. A novel system of three potentiometric cross-sensitive sensors (using the Donnan potential (DP) as an analytical signal) and a reference electrode was developed for the analysis of UV-degraded sulfacetamide drugs. The membranes for DP-sensors were prepared by a casting procedure from a dispersion of perfluorosulfonic acid (PFSA) polymer, containing carbon nanotubes (CNTs), whose surface was preliminarily modified with carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. A correlation between the sorption and transport properties of the hybrid membranes and cross-sensitivity of the DP-sensor to sulfacetamide, its degradation product, and inorganic ions was revealed. The analysis of the UV-degraded sulfacetamide drugs using the multisensory system based on hybrid membranes with optimized properties did not require a pre-separation of the components. The limits of detection of sulfacetamide, sulfanilamide, and sodium were 1.8 × 10-7, 5.8 × 10-7, and 1.8 × 10-7 M. The relative errors of the determination of the components of the UV-degraded sulfacetamide drugs were 2-3% (at 6-8% relative standard deviation). PFSA/CNT hybrid materials provided the stable work of the sensors for at least one year.
Collapse
Affiliation(s)
- Anna Parshina
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Anastasia Yelnikova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Ekaterina Safronova
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Tatyana Kolganova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Olga Bobreshova
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| |
Collapse
|
2
|
Abdi A, Soleymanpour A, Shafaatian B. Ultrasensitive Chemically Modified Carbon Paste Sensor for Reliable and Selective Potentiometric Determination of Trace Amounts of Sitagliptin in Real Samples. ChemistrySelect 2022. [DOI: 10.1002/slct.202202132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arezoo Abdi
- School of Chemistry Damghan University Damghan 3671641167 Iran
| | | | - Bita Shafaatian
- School of Chemistry Damghan University Damghan 3671641167 Iran
| |
Collapse
|
3
|
Chen X, Yang L, Tang J, Wen X, Zheng X, Chen L, Li J, Xie Y, Le T. An AuNPs-Based Fluorescent Sensor with Truncated Aptamer for Detection of Sulfaquinoxaline in Water. BIOSENSORS 2022; 12:bios12070513. [PMID: 35884316 PMCID: PMC9312917 DOI: 10.3390/bios12070513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
Abstract
Herein, we developed a novel truncation technique for aptamer sequences to fabricate highly sensitive aptasensors based on molecular docking and molecular dynamics simulations. The binding mechanism and energy composition of the aptamer/sulfaquinoxaline (SQX) complexes were investigated. We successfully obtained a new SQX-specific aptamer (SBA28-1: CCCTAGGGG) with high affinity (Kd = 27.36 nM) and high specificity determined using graphene oxide. This aptamer has a unique stem-loop structure that can bind to SQX. Then, we fabricated a fluorescence aptasensor based on SBA28-1, gold nanoparticles (AuNPs), and rhodamine B (RhoB) that presented a good linear range of 1.25–160 ng/mL and a limit of detection of 1.04 ng/mL. When used to analyze water samples, the aptasensor presented acceptable recovery rates of 93.1–100.1% and coefficients of variation (CVs) of 2.2–10.2%. In conclusion, the fluorescence aptasensor can accurately and sensitively detect SQX in water samples and has good application prospects.
Collapse
Affiliation(s)
- Xingyue Chen
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Lulan Yang
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Jiaming Tang
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Xu Wen
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Xiaoling Zheng
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Lingling Chen
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Jiaqi Li
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
| | - Yong Xie
- Bioassay 3D Reconstruction Laboratory, Chongqing College of Electronic Engineering, Chongqing 401331, China
- Correspondence: (Y.X.); (T.L.)
| | - Tao Le
- College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.C.); (L.Y.); (J.T.); (X.W.); (X.Z.); (L.C.); (J.L.)
- Correspondence: (Y.X.); (T.L.)
| |
Collapse
|
4
|
Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Polyaniline and PEDOT for Multicomponent Analysis of Sulfacetamide Pharmaceuticals. Polymers (Basel) 2022; 14:polym14132545. [PMID: 35808592 PMCID: PMC9269069 DOI: 10.3390/polym14132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The degradation of sulfacetamide with the formation of sulfanilamide leads to a deterioration in the quality of pharmaceuticals. In this work, potentiometric sensors for the simultaneous determination of sulfanilamide, sulfacetamide and inorganic ions, and for assessing the degradation of pharmaceuticals were developed. A multisensory approach was used for this purpose. The sensor cross-sensitivity to related analytes was achieved using perfluorosulfonic acid membranes with poly(3,4-ethylenedioxythiophene) or polyaniline as dopants. The composite membranes were prepared by oxidative polymerization and characterized using FTIR and UV-Vis spectroscopy, and SEM. The influence of the preparation procedure and the dopant concentration on the membrane hydrophilicity, ion-exchange capacity, water uptake, and transport properties was investigated. The characteristics of the potentiometric sensors in aqueous solutions containing sulfanilamide, sulfacetamide and alkali metals ions in a wide pH range were established. The introduction of proton-acceptor groups and π-conjugated moieties into the perfluorosulfonic acid membranes increased the sensor sensitivity to organic analytes. The relative errors of sulfacetamide and sulfanilamide determination in the UV-degraded eye drops were 1.2 to 1.4 and 1.7 to 4%, respectively, at relative standard deviation of 6 to 9%.
Collapse
|
5
|
Arabhalvaei N, Soleymanpour A, Shafaatian B. Highly sensitive carbon paste electrode modified with a synthesized ferrocenyl Schiff base for trace determination of Ce(
III
) in real samples. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Li S, He B, Liang Y, Wang J, Jiao Q, Liu Y, Guo R, Wei M, Jin H. Sensitive electrochemical aptasensor for determination of sulfaquinoxaline based on AuPd NPs@UiO-66-NH 2/CoSe 2 and RecJf exonuclease-assisted signal amplification. Anal Chim Acta 2021; 1182:338948. [PMID: 34602189 DOI: 10.1016/j.aca.2021.338948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023]
Abstract
The authors designed a sensitive label-free electrochemical aptasensor for the detection of sulfaquinoxaline (SQX), including the AuPd NPs@UiO-66-NH2/CoSe2 nanocomposites and RecJf exonuclease-assisted target recycle signal amplification strategy. AuPd NPs@UiO-66-NH2/CoSe2 nanocomposite with excellent conductivity and numerous active sites was successfully synthesized to provide a favorable sensing platform and load more double-strand DNA (dsDNA) on the electrode surface. The negatively charged phosphate group of the oligonucleotide and [Fe (CN)6] 3-/4- repel each other electrostatically, resulting in very low electrical signals. In the presence of SQX, its corresponding aptamer will be released from the double-stranded structure and then digested by RecJf exonuclease, which resulted in the SQX being released to initiate the next recycling to help amplify the DPV signal. Under the optimal conditions, the peak current has a linear relationship with the logarithmic of SQX concentration in the range of 1 pg/mL∼100 ng/mL and the obtained detection limit was 0.547 pg/mL. Furthermore, the contrasted aptasensor possess reliable specificity, reproducibility and stability toward SQX, and has been applied to detect SQX in pork samples with a satisfied recovery varied from 94.40% to 95.98%.
Collapse
Affiliation(s)
- Shuying Li
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China.
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Qiang Jiao
- Henan Province Food Inspection Research Institute, Zhengzhou, Henan, 450003, PR China
| | - Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, PR China
| | - Rui Guo
- Henan Institute of Product Quality Supervision and Inspection, Zhengzhou, Henan, 450047, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
7
|
de Faria LV, Lisboa TP, Campos NDS, Alves GF, Matos MAC, Matos RC, Munoz RAA. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal Chim Acta 2021; 1173:338569. [PMID: 34172150 DOI: 10.1016/j.aca.2021.338569] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Several antibiotics have been applied to veterinary medicine due to their broad-spectrum of antibacterial activity and prophylactic power. Residues of these antibiotics can be accumulated in dairy cattle, in addition to promoting contamination of the environment and, in more serious cases, in milk, causing a public health problem. Different regulatory agencies establish maximum residue limits for these antibiotics in milk, so it becomes important to develop sensitive analytical methods for monitoring these compounds. Electrochemical techniques are important analytical tools in analytical chemistry because they present low cost, simplicity, high sensitivity, and adequate analytical frequency (sample throughput) for routine analyses. In this sense, this review summarizes the state of the art of the main electrochemical sensors and biosensors, instrumental techniques, and sample preparation used for the development of analytical methods, published in the last five years, for the monitoring of different classes of antibiotics: aminoglycosides, amphenicols, beta-lactams, fluoroquinolones, sulfonamides, and tetracyclines, in milk samples. The different strategies to develop electrochemical sensors and biosensors are critically compared considering their analytical features. The mechanisms of electrochemical oxidation/reduction of the antibiotics are revised and discussed considering strategies to improve the selectivity of the method. In addition, current challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Lucas Vinícius de Faria
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Thalles Pedrosa Lisboa
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Náira da Silva Campos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Guilherme Figueira Alves
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | | | - Renato Camargo Matos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil.
| | | |
Collapse
|
8
|
Stenina IA, Yaroslavtsev AB. Ionic Mobility in Ion-Exchange Membranes. MEMBRANES 2021; 11:198. [PMID: 33799886 PMCID: PMC7998860 DOI: 10.3390/membranes11030198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
Membrane technologies are widely demanded in a number of modern industries. Ion-exchange membranes are one of the most widespread and demanded types of membranes. Their main task is the selective transfer of certain ions and prevention of transfer of other ions or molecules, and the most important characteristics are ionic conductivity and selectivity of transfer processes. Both parameters are determined by ionic and molecular mobility in membranes. To study this mobility, the main techniques used are nuclear magnetic resonance and impedance spectroscopy. In this comprehensive review, mechanisms of transfer processes in various ion-exchange membranes, including homogeneous, heterogeneous, and hybrid ones, are discussed. Correlations of structures of ion-exchange membranes and their hydration with ion transport mechanisms are also reviewed. The features of proton transfer, which plays a decisive role in the membrane used in fuel cells and electrolyzers, are highlighted. These devices largely determine development of hydrogen energy in the modern world. The features of ion transfer in heterogeneous and hybrid membranes with inorganic nanoparticles are also discussed.
Collapse
Affiliation(s)
| | - Andrey B. Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky pr. 31, 119991 Moscow, Russia;
| |
Collapse
|
9
|
Sandikly N, Kassir M, El Jamal M, Takache H, Arnoux P, Mokh S, Al-Iskandarani M, Roques-Carmes T. Comparison of the toxicity of waters containing initially sulfaquinoxaline after photocatalytic treatment by TiO 2 and polyaniline/TiO 2. ENVIRONMENTAL TECHNOLOGY 2021; 42:419-428. [PMID: 31180807 DOI: 10.1080/09593330.2019.1630485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
This paper addresses the residual toxicity of waters after photocatalysis treatments. The initial waters contain 7 mg L-1 of sulfaquinoxaline (SQX) which is a sulfonamide antibiotic generally recorded inside the water. The contaminated waters are treated by photocatalytic degradation process with bare titania and titania covered with polyaniline (PANI) conducting polymer. The degradation of SQX is conducted at different pH in order to find the optimal condition to obtain SQX concentration relatively equal to zero in the shortest amount of time. This occurs for PANI/TiO2 at pH 12 and TiO2 at pH 4. Toxicity assays (concentration of biomass, pigmentation tests, and cells counting) are undertaken on the microalgae Chlorella vulgaris in order to evaluate the residual toxicity of the 2 treated waters. The toxicity results highlight that the water treated by PANI/TiO2 at pH 12 is the less toxic towards the algae cells. The water processed by bare titania at acidic pH displays unneglectable toxicity towards the algae cells which are larger than the toxicity of the original SQX solution.
Collapse
Affiliation(s)
- Nahid Sandikly
- Faculty of Public Health, Lebanese University, Beirut, Lebanon
| | - Mounir Kassir
- Platform for Research and Analysis in Environmental Sciences, Doctoral School of Science and Technology, Lebanese University, Beirut, Lebanon
| | | | - Hosni Takache
- Department of Food Sciences and Technology, Faculty of Agriculture, Lebanese University, Dekweneh, Beirut, Lebanon
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, Nancy Cedex, France
| | - Samia Mokh
- Faculty of Public Health, Lebanese University, Beirut, Lebanon
- Laboratory for Analysis of Organic Compound (LACO), Lebanese Atomic Energy Commission (LAEC), National Council for Scientific Research (CNRS), Beirut, Lebanon
| | | | - Thibault Roques-Carmes
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, Nancy Cedex, France
| |
Collapse
|
10
|
Titova TS, Yurova PA, Evdokimova DD, Kolganova TS, Parshina AV, Stenina IA, Bobreshova OV, Yaroslavtsev AB. Multisensory Systems Based on Nafion Membranes Modified by PEDOT for the Determination of Sulfacetamide in Aqueous Solutions and Pharmaceuticals. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620060098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Shi H, Kou Q, Wu P, Sun Q, Wu J, Le T. Selection and Application of DNA Aptamers Against Sulfaquinoxaline Assisted by Graphene Oxide–Based SELEX. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01869-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Safronova E, Parshina A, Kоlganova T, Yelnikova A, Bobreshova O, Pourcelly G, Yaroslavtsev A. Potentiometric multisensory system based on perfluorosulfonic acid membranes and carbon nanotubes for sulfacetamide determination in pharmaceuticals. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Ahmed AAEH, Korany MA, Khalil MM. Electrochemical determination of verapamil hydrochloride using carbon nanotubes/TiO2 nanocomposite based potentiometric sensors in surface water and urine samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Abstract
Background:
The determination of drugs in pharmaceutical formulations and human biologic fluids is
important for pharmaceutical and medical sciences. Successful analysis requires low sensitivity, high selectivity
and minimum interference effects. Current analytical methods can detect drugs at very low levels but these methods
require long sample preparation steps, extraction prior to analysis, highly trained technical staff and high-cost
instruments. Biosensors offer several advantages such as short analysis time, high sensitivity, real-time analysis,
low-cost instruments, and short pretreatment steps over traditional techniques. Biosensors allow quantification not
only of the active component in pharmaceutical formulations, but also the degradation products and metabolites in
biological fluids. The present review gives comprehensive information on the application of biosensors for drug
discovery and analysis. Moreover, this review focuses on the fabrication of these biosensors.
Methods:
Biosensors can be classified as the utilized bioreceptor and the signal transduction mechanism. The classification
based on signal transductions includes electrochemical optical, thermal or acoustic. Electrochemical and
optic transducers are mostly utilized transducers used for drug analysis. There are many biological recognition elements,
such as enzymes, antibodies, cells that have been used in fabricating of biosensors. Aptamers and antibodies
are the most widely used recognition elements for the screening of the drugs. Electrochemical sensors and biosensors
have several advantages such as low detection limits, a wide linear response range, good stability and reproducibility.
Optical biosensors have several advantages such as direct, real-time and label-free detection of many
biological and chemical substances, high specificity, sensitivity, small size and low cost. Modified electrodes enhance
sensitivity of the electrodes to develop a new biosensor with desired features. Chemically modified electrodes
have gained attention in drug analysis owing to low background current, wide potential window range, simple
surface renewal, low detection limit and low cost. Modified electrodes produced by modifying of a solid surface
electrode via different materials (carbonaceous materials, metal nanoparticles, polymer, biomolecules) immobilization.
Recent advances in nanotechnology offer opportunities to design and construct biosensors. Unique features
of nanomaterials provide many advantages in the fabrication of biosensors. Nanomaterials have controllable
chemical structures, large surface to volume ratios, functional groups on their surface. To develop proteininorganic
hybrid nanomaterials, four preparation methods have been used. These methods are immobilization, conjugation,
crosslinking and self-assembly. In the present manuscript, applications of different biosensors, fabricated
by using several materials, for drug analysis are reviewed. The biosensing strategies are investigated and discussed
in detail.
Results:
Several analytical techniques such as chromatography, spectroscopy, radiometry, immunoassays and electrochemistry
have been used for drug analysis and quantification. Methods based on chromatography require timeconsuming
procedure, long sample-preparation steps, expensive instruments and trained staff. Compared to chromatographic
methods, immunoassays have simple protocols and lower cost. Electrochemical measurements have
many advantages over traditional chemical analyses and give information about drug quantity, metabolic fate of
drugs, and pharmacological activity. Moreover, the electroanalytical methods are useful to determine drugs sensitively
and selectivity. Additionally, these methods decrease analysis cost and require low-cost instruments and
simple sample pretreatment steps.
Conclusion:
In recent years, drug analyses are performed using traditional techniques. These techniques have a
good detection limit, but they have some limitations such as long analysis time, expensive device and experienced
personnel requirement. Increased demand for practical and low-cost analytical techniques biosensor has gained interest
for drug determinations in medical sciences. Biosensors are unique and successful devices when compared to
traditional techniques. For drug determination, different electrode modification materials and different biorecognition
elements are used for biosensor construction. Several biosensor construction strategies have been developed to
enhance the biosensor performance. With the considerable progress in electrode surface modification, promotes the
selectivity of the biosensor, decreases the production cost and provides miniaturization. In the next years, advances
in technology will provide low cost, sensitive, selective biosensors for drug analysis in drug formulations and biological
samples.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Namik Kemal University, Scientific and Technological Research Center, Tekirdag, Turkey
| | - Muhammet Aydin
- Namik Kemal University, Scientific and Technological Research Center, Tekirdag, Turkey
| | - Mustafa Kemal Sezginturk
- Canakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Canakkale, Turkey
| |
Collapse
|
15
|
Dehnavi A, Soleymanpour A. New chemically modified carbon paste sensor for nanomolar concentration measurement of rifampicin in biological and pharmaceutical media. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:403-409. [DOI: 10.1016/j.msec.2018.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/31/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
|
16
|
Ma X, Li S, Pang C, Xiong Y, Li J. A Cu(II)-anchored unzipped covalent triazine framework with peroxidase-mimicking properties for molecular imprinting-based electrochemiluminescent detection of sulfaquinoxaline. Mikrochim Acta 2018; 185:546. [PMID: 30426279 DOI: 10.1007/s00604-018-3079-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
The authors describe a method of electrochemiluminescent quantitation of the antibiotic sulfaquinoxaline (SQX). It relies on the use of a molecularly imprinted polymer and a Cu(II)-anchored unzipped covalent triazine framework (UnZ-CCTF) with excellent dispersibility, electrical conductivity, and peroxidaze-like activity. The framework was prepared by unzipping a covalent triazine framework under retention of basic triazine units. It was morphologically and structurally characterized by a range of instrumental techniques. The excellent peroxidase-mimicking effect of UnZ-CCTF on the electrochemiluminescence of the luminol/H2O2 system was exploited to design an ultrasensitive SQX assay with a 1.0-20 pM detection range and a detection limit of 0.76 pM (at 3δ/m). The technique was used for SQX quantitation in spiked milk samples, achieving recoveries of 94.0-104.8%. Graphical abstract Scheme of the sulfaquinoxaline molecularly imprinted electrochemiluminescence sensor based on Cu-anchored unzipped covalent triazine frameworks.
Collapse
Affiliation(s)
- Xionghui Ma
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture, Haikou, 571101, China.
| | - Shuhuai Li
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture, Haikou, 571101, China
| | - Chaohai Pang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture, Haikou, 571101, China
| | - Yuhao Xiong
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, China.
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
17
|
Issa YM, Sherif OE, Dena ASA. A Disposable Homemade Screen Printed Electrochemical Sensor for Vitamin B1 Determination in Multivitamin Ampoules: Potentiometric and Surface Morphology Studies. ELECTROANAL 2017. [DOI: 10.1002/elan.201700034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yousry M. Issa
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Omaima E. Sherif
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Ahmed S. Abo Dena
- Faculty of Oral and Dental Medicine; Future University in Egypt (FUE); New Cairo Egypt
- National Organization for Drug Control and Research (NODCAR); P.O. Box 29 Giza Egypt
| |
Collapse
|
18
|
Wu D, Du D, Lin Y. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|