1
|
Ultrasensitive determination of metronidazole using flower-like cobalt anchored on reduced graphene oxide nanocomposite electrochemical sensor. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
2
|
Du M, Chen Q, Xu X. A novel and label-free electrochemical aptasensor based on exonuclease III and G-quadruplex DNAzyme for sensitive and selective detection of metronidazole. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Ettadili F, Azriouil M, Matrouf M, Tahiri Alaoui O, Laghrib F, Farahi A, Bakasse M, Saqrane S, Lahrich S, El Mhammedi M. Materials framework based bio/sensors for the detection of ornidazole and metronidazole antibiotics in environment and foodstuffs. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022; 54:269-314. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The strong development of mankind is inseparable from the proper use of drugs, and the electroanalytical research of drugs occupies an important position in the field of analytical chemistry. This review mainly elaborates the research progress of drugs electroanalysis based on direct electrochemical redox on various electrodes for the recent decade from 2011 to 2021. At first, we summarize some frequently used electrochemical data processing and electrochemical mechanism research derivation methods in the literature. Then, according to the drug therapeutic and application/usage purposes, the research progress of drugs electrochemical analysis is classified and discussed, where we focus on drugs electrochemical reaction mechanism. At the same time, the comparisons of electrochemical sensing performance of the drugs on various electrodes from recent studies are listed, so that readers can more intuitively compare and understand the electroanalytical sensing performance of each modified electrode for each of the drug. Finally, this review discusses the shortcomings and prospects of the drugs electroanalysis based on direct electrochemical redox research.
Collapse
Affiliation(s)
- Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Feichen Shen
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Rupesh K Mishra
- Identify Sensors Biologics at Bindley Bioscience Center, West Lafayette, Indiana, USA
- School of Material Science and Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueling Zhao
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, China
| |
Collapse
|
5
|
Hu X, Zhang H, Liu M. A cucurbit[7]uril-based supramolecular fluorescent probe for the detection of metronidazole with high sensitivity and strong anti-interference capacity. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211055103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We propose a new method for the selective detection of the antibiotic metronidazole (MNZ) using CB[7]-JAT (cucurbit[7]uril = CB[7] and JAT = jatrorrhizine) as a fluorescent probe, which is based on the competitive reaction between MNZ and JAT for the occupancy of the CB[7] cavity. The proposed method gives a good calibration curve in the concentration range of 0.38–60 μM, and the limit of detection for MNZ is 65 ng mL−1 with those obtained by the standard curve method. Moreover, the proposed method was successfully applied for the determination of MNZ in liquid milk. Most importantly, due to the high binding affinity between CB[7] and MNZ, the proposed method shows great anti-interference capacity to accurately detect MNZ in the presence of other antibiotics.
Collapse
Affiliation(s)
- Xuemei Hu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P.R. China
| | - Huaqing Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P.R. China
| | - Mei Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P.R. China
| |
Collapse
|
6
|
Enhanced effect of pyrite on the removal of metronidazole by zero valent iron. J Colloid Interface Sci 2021; 600:775-783. [PMID: 34051465 DOI: 10.1016/j.jcis.2021.05.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/08/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023]
Abstract
The abuse and improper disposal of antibiotics including metronidazole (MNZ) result in serious contamination in aquatic environments. In this study, pyrite, which was not reactive for MNZ removal, was simply mixed with zero valent iron (ZVI) to efficiently remove MNZ in anaerobic aqueous solutions. A dual ZVI/pyrite system consisting of ZVI (1.0 g/L) and pyrite (4.0 g/L) removed MNZ completely in 360 min within a broad pH0 range (5.0-9.0), and it still maintained a high removal efficiency (~80%) even at a high pH0 of 10.0. By contrast, single ZVI (1.0 g/L) showed much lower efficiency (4.8%-22.0%) within the same pH0 range (5.0-10.0). On investigating the mechanism of MNZ removal, the cooperation between ZVI and pyrite enhanced the surface corrosion of ZVI and facilitated the redox cycle of Fe(III)/Fe(II) to generate more sorbed Fe(II), which was a dominant reactive species for MNZ removal. Pyrite also activated the ZVI surface to form FeS@Fe in situ, accelerating the electron transfer from Fe0 core to the surface-enriched MNZ, and stimulated the formation of green rust sulfate on the ZVI surface to further promote MNZ removal. LC-MS analysis confirmed ZVI/pyrite reductively transformed MNZ into readily biodegradable products by denitration and cleavage of hydroxyethyl.
Collapse
|
7
|
Modified electrodes for electrochemical determination of metronidazole in drug formulations and biological samples: An overview. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Electrochemical Sensors for Determination of Bromate in Water and Food Samples-Review. BIOSENSORS-BASEL 2021; 11:bios11060172. [PMID: 34072226 PMCID: PMC8230011 DOI: 10.3390/bios11060172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
The application of potassium bromate in the baking industry is used in most parts of the world to avert the human health compromise that characterizes bromates carcinogenic effect. Herein, various methods of its analysis, especially the electrochemical methods of bromate detection, were extensively discussed. Amperometry (AP), cyclic voltammetry (CV), square wave voltammetry (SWV), electrochemiluminescence (ECL), differential pulse voltammetry and electrochemical impedance spectroscopy (EIS) are the techniques that have been deployed for bromate detection in the last two decades, with 50%, 23%, 7.7%, 7.7%, 7.7% and 3.9% application, respectively. Despite the unique electrocatalytic activity of metal phthalocyanine (MP) and carbon quantum dots (CQDs), only few sensors based on MP and CQDs are available compared to the conducting polymers, carbon nanotubes (CNTs), metal (oxide) and graphene-based sensors. This review emboldens the underutilization of CQDs and metal phthalocyanines as sensing materials and briefly discusses the future perspective on MP and CQDs application in bromate detection via EIS.
Collapse
|
9
|
Sensitive acetaminophen electrochemical sensor with amplified signal strategy via non-covalent functionalization of soluble tetrahydroxyphthalocyanine and graphene. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Annu, Raja AN. Recent development in chitosan-based electrochemical sensors and its sensing application. Int J Biol Macromol 2020; 164:4231-4244. [DOI: 10.1016/j.ijbiomac.2020.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
|
11
|
Abstract
Phthalocyanines are aromatic or macrocyclic organic compounds and attract great attention due to their numerous properties. They have many high-tech applications in different areas of the industry such as dyestuffs, thermal printing screens, photovoltaic solar cells, membrane catalytic reactors, semiconductor materials and gas sensors. In the last decade, electrochemical sensor studies have accelerated with the catalytic lighting. It plays a dominant role in the development and implementation of new generation sensors. The aim of this study is to review the electrochemical methods based on electrode modification with phthalocyanines and to shed light on new application areas of phthalocyanines. The focal point was based on the sensor applications of phthalocyanines in the determination of drugs, pesticides, organic materials and metals etc. by electrochemical methods. Experimental conditions and some validation parameters of the sensor applications such as metal phthalocyanine types, indicator electrodes, selectivity, working ranges, detection limits, and analytical applications were discussed. Consequently, this is the first review dealing with the applications of phthalocyanines in electrochemical sensors for the sensitive determination of analytes in a variety of matrices.
Collapse
Affiliation(s)
- Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Hulya Silah
- Department of Chemistry, Faculty of Art & Science, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Karthik R, Mutharani B, Chen SM, Vinoth Kumar J, Abinaya M, Chen TW, Lei W, Hao Q. Synthesis, characterization and catalytic performance of nanostructured dysprosium molybdate catalyst for selective biomolecule detection in biological and pharmaceutical samples. J Mater Chem B 2020; 7:5065-5077. [PMID: 31432868 DOI: 10.1039/c9tb01020c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current study reports a new, simple and fast method using a flake-like dysprosium molybdate (Dy2MoO6; FL-DyM) nanostructured material to detect the antibiotic drug metronidazole (METZ). This nanocomposite material was employed on the surface of a glassy carbon electrode (GCE) to develop the electrode (FL-DyM/GCE). Further, the synthesized FL-DyM was systematically characterized by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray diffraction (EDS), elemental mapping, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analyses. Cyclic (CV) and differential pulse voltammetry (DPV) techniques were used to study the electrochemical properties. The FL-DyM/GCE-based sensor demonstrated excellent selectivity and sensitivity for the detection of the drug METZ, which could be attributed to the strong affinity of FL-DyM towards the -NO2 group in METZ, and the good electrocatalytic activity and conductivity of FL-DyM. The fabrication and optimization of the working electrode were accomplished with CV and DPV obtained by scan rate and pH studies. Compared to the bare GCE and other rare-earth metal molybdates, the FL-DyM/GCE sensor displayed a superior electrocatalytic activity response for METZ detection. The sensor demonstrated a good linear relationship over the concentration range of 0.01-2363 μM. The quantification and detection limits were found to be 0.010 μM and 0.0030 μM, respectively. The FL-DyM/GCE sensor displayed excellent selectivity, repeatability, reproducibility, and stability for the detection of METZ in human urine and commercial METZ tablet samples, which validates the new technique for efficient drug sensing in practical applications.
Collapse
Affiliation(s)
- Raj Karthik
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - Bhuvanenthiran Mutharani
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - Jeyaraj Vinoth Kumar
- Department of Chemistry, Nanomaterials Laboratory, IRC, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu 626 126, India
| | | | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, P. R. China.
| | - Qingli Hao
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, P. R. China.
| |
Collapse
|
13
|
Rosenberger AG, Dragunski DC, Muniz EC, Módenes AN, Alves HJ, Tarley CRT, Machado SAS, Caetano J. Electrospinning in the preparation of an electrochemical sensor based on carbon nanotubes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Lebedeva NS, Guseinov SS, Yurina ES, Gubarev YA, Koifman OI. Thermochemical research of chitosan complexes with sulfonated metallophthalocyanines. Int J Biol Macromol 2019; 137:1153-1160. [PMID: 31295483 DOI: 10.1016/j.ijbiomac.2019.07.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
Abstract
The complexation processes of chitosan with cobalt(II)tetrasulfophthalocyanine (CoPc) and copper(II)tetrasulfophthalocyanine (CuPc) were studied calorimetrically in solution. It was established that CoPc forms two types of complexes with chitosan, while CuPc forms a single type of complex with chitosan, in which copper(II)tetrasulfophthalocyanine is in dimerized form. The complexes are thermodynamically stable, which was allowed to study them in a solid form by different methods. Joint application of DSC and TG/DTG methods allowed us to identify the temperature intervals for evaporation of physically and chemically bounded water and thermal decomposition of chitosan and its complexes. The glass transition temperature of chitosan (110.8 °C) is greater than the glass transition temperature of the complexes with CuPc (74.7 °C) and CoPc (71.2 °C). Using SEM images and X-ray data of heated, unheated chitosan and its complexes, it was shown that the complexes are predominantly amorphous. Heating of chitosan and its leads to increasing of amorphous phase. Modification of chitosan by phthalocyanines leads to decreasing of thermal stability of complexes insignificantly.
Collapse
Affiliation(s)
- Natalya Sh Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russian Federation
| | - Sabir S Guseinov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russian Federation
| | - Elena S Yurina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russian Federation
| | - Yury A Gubarev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russian Federation.
| | - Oskar I Koifman
- Research Institute of Macroheterocycles, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russian Federation
| |
Collapse
|
15
|
Chen H, Wu X, Zhao R, Zheng Z, Yuan Q, Dong Z, Gan W. Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole. Mikrochim Acta 2019; 186:623. [PMID: 31414250 DOI: 10.1007/s00604-019-3737-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/02/2019] [Indexed: 01/14/2023]
Abstract
The integration of derivatives of granular metal-organic frameworks (MOFs) and an electrically conductive carbon substrate is an effective way to circumvent the deficiency of powdered pristine MOFs or MOF-derived carbon in practical application. The authors describe the use of graphite oxide (GO) as a substrate for in-situ assembly with the zeolitic imidazole framework ZIF-67. The GO and ZIF-67 composites were converted, via pyrolysis, into reduced graphite oxide loaded with Co/N-co-doped carbon polyhedrons (ZIF-67C@rGO). By using various amounts of GO, a series of ZIF-67C@rGO-x with different fractions of GO were synthesized and utilized as electrode modifiers for the detection of the antibiotic metronidazole (MNZ). The results revealed that the ZIF-67C@rGO-0.06 display best sensing performance. This is likely to be due to its hierarchically open pores, abundant active sites and good electrical conductivity. The sensor, best operated near a working potential around -0.6 V (vs. SCE), has a linear response in the 0.5 to 1000 μM MNZ concentration range and a 0.05 μM detection limit. The sensor was applied to the analysis of pharmaceutical samples where it showed excellent selectivity, good repeatability and satisfying recoveries. Graphical abstract Schematic representation of preparation and application of ZIF-67C@rGO-x.
Collapse
Affiliation(s)
- Han Chen
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xingxing Wu
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Rui Zhao
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zhou Zheng
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Qunhui Yuan
- State Key Laboratory of Advanced Welding and Joining, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Zhijun Dong
- Institute of Technology for Marine Civil Engineering, Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
| | - Wei Gan
- State Key Laboratory of Advanced Welding and Joining, and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
16
|
Madhuri C, Manohara Reddy YV, Prabhakar Vattikuti S, Švorc Ľ, Shim J, Madhavi G. Trace-level determination of amlodipine besylate by immobilization of palladium-silver bi-metallic nanoparticles on reduced graphene oxide as an electrochemical sensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Ranganathan P, Mutharani B, Chen SM, Sireesha P. Biocompatible chitosan-pectin polyelectrolyte complex for simultaneous electrochemical determination of metronidazole and metribuzin. Carbohydr Polym 2019; 214:317-327. [PMID: 30926003 DOI: 10.1016/j.carbpol.2019.03.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022]
Abstract
Development of novel biocompatible sensor material suitable for modest, cost-effective, and rapid practical application is a demanding research interest in the field of electroanalytical chemistry. In this context, for the first time, we utilized biocompatible chitosan-pectin biopolyelectrolyte (CS-PC BPE) complex for the simultaneous electroreduction of an important antibiotic drug (metronidazole-MNZ) and herbicide (metribuzin-MTZ). This sensor reveals an attractive welfares such as simplicity, biocompatibility, and low production cost. Under optimized experimental conditions, the electroanalytical investigation confirmed that CS-PC BPE modified glassy carbon electrode (CS-PC BPE/GCE) was found to sense MNZ and MTZ in the nanomolar range. Moreover, as-prepared CS-PC BPE/GCE exhibited prominent selectivity, stability, and reproducibility. Additionally, the possible MNZ and MTZ sensing mechanism of CS-PC BPE/GCE have been discussed in detail. Lastly, real sample analysis was also carried out and revealed from several investigations that the CS-PC BPE/GCE is a good electrochemical sensor system for the detection of targeted analytes.
Collapse
Affiliation(s)
- Palraj Ranganathan
- Institute of Organic and Polymeric Materials and Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Bhuvanenthiran Mutharani
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Pedaballi Sireesha
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
| |
Collapse
|
18
|
Ramki S, Sukanya R, Chen SM, Sakthivel M. Hierarchical multi-layered molybdenum carbide encapsulated oxidized carbon nanofiber for selective electrochemical detection of antimicrobial agents: inter-connected path in multi-layered structure for efficient electron transfer. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00158a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The schematic illustration for electrochemical sensing of MTZ at Mo2/C/f-CNF modified GCE.
Collapse
Affiliation(s)
- Settu Ramki
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Ramaraj Sukanya
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Mani Sakthivel
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| |
Collapse
|
19
|
Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene-β-cyclodextrin composite for trace-level detection of antibiotic drug metronidazole. J Colloid Interface Sci 2018; 530:37-45. [DOI: 10.1016/j.jcis.2018.06.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/18/2023]
|
20
|
Meenakshi S, Jancy Sophia S, Pandian K. High surface graphene nanoflakes as sensitive sensing platform for simultaneous electrochemical detection of metronidazole and chloramphenicol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:407-419. [DOI: 10.1016/j.msec.2018.04.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/06/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023]
|
21
|
Ultrasensitive Electrochemical Detection of Clostridium perfringens DNA Based Morphology-Dependent DNA Adsorption Properties of CeO₂ Nanorods in Dairy Products. SENSORS 2018; 18:s18061878. [PMID: 29890646 PMCID: PMC6022109 DOI: 10.3390/s18061878] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023]
Abstract
Foodborne pathogens such as Clostridium perfringens can cause diverse illnesses and seriously threaten to human health, yet far less attention has been given to detecting these pathogenic bacteria. Herein, two morphologies of nanoceria were synthesized via adjusting the concentration of NaOH, and CeO₂ nanorod has been utilized as sensing material to achieve sensitive and selective detection of C. perfringens DNA sequence due to its strong adsorption ability towards DNA compared to nanoparticle. The DNA probe was tightly immobilized on CeO₂/chitosan modified electrode surface via metal coordination, and the DNA surface density was 2.51 × 10−10 mol/cm². Under optimal experimental conditions, the electrochemical impedance biosensor displays favorable selectivity toward target DNA in comparison with base-mismatched and non-complementary DNA. The dynamic linear range of the proposed biosensor for detecting oligonucleotide sequence of Clostridium perfringens was from 1.0 × 10−14 to 1.0 × 10−7 mol/L. The detection limit was 7.06 × 10−15 mol/L. In comparison, differential pulse voltammetry (DPV) method quantified the target DNA with a detection limit of 1.95 × 10−15 mol/L. Moreover, the DNA biosensor could detect C. perfringens extracted DNA in dairy products and provided a potential application in food quality control.
Collapse
|
22
|
Facile one pot synthesis of bimetallic Pd-Ag/reduced graphene oxide nanocomposite as an electrochemical sensor for sensitive detection of anti-hypotensive drug. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Rawson TM, O’Hare D, Herrero P, Sharma S, Moore LSP, de Barra E, Roberts JA, Gordon AC, Hope W, Georgiou P, Cass AEG, Holmes AH. Delivering precision antimicrobial therapy through closed-loop control systems. J Antimicrob Chemother 2018; 73:835-843. [PMID: 29211877 PMCID: PMC5890674 DOI: 10.1093/jac/dkx458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sub-optimal exposure to antimicrobial therapy is associated with poor patient outcomes and the development of antimicrobial resistance. Mechanisms for optimizing the concentration of a drug within the individual patient are under development. However, several barriers remain in realizing true individualization of therapy. These include problems with plasma drug sampling, availability of appropriate assays, and current mechanisms for dose adjustment. Biosensor technology offers a means of providing real-time monitoring of antimicrobials in a minimally invasive fashion. We report the potential for using microneedle biosensor technology as part of closed-loop control systems for the optimization of antimicrobial therapy in individual patients.
Collapse
Affiliation(s)
- T M Rawson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - D O’Hare
- Department of Bioengineering, Imperial College London, London, UK
| | - P Herrero
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - S Sharma
- College of Engineering, Swansea University, Swansea, UK
| | - L S P Moore
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| | - E de Barra
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| | - J A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine and Centre for Translational Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia
- Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - A C Gordon
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - W Hope
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - P Georgiou
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - A E G Cass
- Department of Chemistry & Institute of Biomedical Engineering, Imperial College London, Kensington Campus, London, UK
| | - A H Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| |
Collapse
|
24
|
Simultaneous determination of theophylline and caffeine on novel [Tetra-(5-chloroquinolin-8-yloxy) phthalocyanato] manganese(III)-Carbon nanotubes composite electrode. Talanta 2018; 184:452-460. [PMID: 29674068 DOI: 10.1016/j.talanta.2018.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 01/05/2023]
Abstract
This work reports the synthesis of new symmetrically substituted manganese(III) phthalocyanine (2eOHMnPc) (2) containing tetra 5-chloroquinolin-8-yloxy group at the peripheral position for the first time. Manganese(III) phthalocyanine (2) was synthesized by cyclotetramerization of 4-(5-chloroquinolin-8-yloxy)phthalonitrile (1) in the presence of corresponding metal salt (manganese(II) chloride). This peripherally substituted phthalocyanine complex (2) was purified by column chromatography and characterized by several techniques such as IR, mass and UV-Visible spectral data. This novel synthesized phthalocyanine was mixed with multiwalled carbon nanotubes in order to prepare the novel catalytic surface on glassy carbon electrode for theophylline and caffeine detection in acidic medium. The novel composite electrode surfaces were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Individual and simultaneous determination of theophylline and caffeine were studied by differential pulse voltammetry. The detection limits were individually calculated for theophylline and caffeine as 6.6 × 10-9 M and 5.0 × 10-8 M, respectively. In simultaneous determination, LODs were calculated for theophylline and caffeine as 8.1 × 10-9 M and 3.0 × 10-7 M, respectively. The practical applicability of the proposed modified electrode was tested for the determination of theophylline and caffeine in green tea, cola and theophylline serum.
Collapse
|
25
|
Zina F, Nooredeen NM, Azzouzi S, Ali MB, Abbas MN, Errachid A. Novel Sensitive Impedimetric Microsensor for Phosphate Detection Based on a Novel Copper Phthalocyanine Derivative. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1322096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fredj Zina
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, Sousse, Tunisia
- NANOMISENE Lab, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse, Sousse, Tunisia
| | | | - Sawsen Azzouzi
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, Sousse, Tunisia
- NANOMISENE Lab, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse, Sousse, Tunisia
| | - Mounir Ben Ali
- Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, Sousse, Tunisia
- NANOMISENE Lab, Centre for Research on Microelectronics and Nanotechnology of Sousse, Technopole of Sousse, Sousse, Tunisia
| | | | - Abdelhamid Errachid
- Institut des Sciences Analytiques (ISA), Université Lyon, Villeurbanne, France
| |
Collapse
|