1
|
Ma H, Xie B, Chen H, Hao L, Jia H, Yu D, Zhou Y, Song P, Li Y, Liu J, Yu K, Zhao Y, Zhang Y. Structurally sophisticated 3D-printed PCL-fibrin hydrogel meniscal scaffold promotes in situ regeneration in the rabbit knee meniscus. Mater Today Bio 2025; 30:101391. [PMID: 39790487 PMCID: PMC11715118 DOI: 10.1016/j.mtbio.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option. In this study, we established the size of a standardized meniscal scaffold using knee Magnetic Resonance Imaging (MRI) data and created a precise Polycaprolactone (PCL) scaffold utilizing 3-Dimensional (3D) printing technology, which was then combined with Fibrin (Fib) hydrogel to form a PCL-Fib scaffold. The PCL scaffold offers superior biomechanical properties, while the Fib hydrogel creates a conducive microenvironment for cell growth, supporting chondrocyte proliferation and extracellular matrix (ECM) production. Physical and chemical characterization, biocompatibility testing, and in vivo animal experiments revealed the excellent biomechanical properties and biocompatibility of the scaffold, which enhanced in situ meniscal regeneration and reduced osteoarthritis progression. In conclusion, the integration of 3D printing technology and the Fib hydrogel provided a supportive microenvironment for chondrocyte proliferation and ECM secretion, facilitating the in situ regeneration and repair of the meniscal defect. This innovative approach presents a promising avenue for meniscal injury treatment and advances the clinical utilization of artificial meniscal grafts.
Collapse
Affiliation(s)
- Hebin Ma
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
- Air Force Characteristic Medical Center, The Fifth School of Clinical Medicine, Anhui Medical University, Beijing, 100142, PR China
| | - Bowen Xie
- Air Force Characteristic Medical Center, The Fifth School of Clinical Medicine, Anhui Medical University, Beijing, 100142, PR China
| | - Hongguang Chen
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Lifang Hao
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Haigang Jia
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
| | - Dengjie Yu
- Medical School of Chinese PLA, Beijing, 100853, PR China
| | - Yuanbo Zhou
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Puzhen Song
- Medical School of Chinese PLA, Beijing, 100853, PR China
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
| | - Yajing Li
- Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100091, PR China
| | - Jing Liu
- Department of Radiological, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
| | - Kaitao Yu
- Department of Stomatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, PR China
| | - Yantao Zhao
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Beijing Engineering Research Center of Orthopedics Implants, Beijing, 100048, PR China
| | - Yadong Zhang
- Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China
- Department of Orthopedics, the Fifth Medical Center of PLA General Hospital, Beijing, 100071, PR China
| |
Collapse
|
2
|
Zhang Z, Li Z, Wang D, Feng J, Feng Q. Investigating the Impact of Pore Size and Specification on Soft Tissue Ingrowth in 3D-Printed PEEK Material. Macromol Biosci 2024; 24:e2400278. [PMID: 39348166 DOI: 10.1002/mabi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Bone pelvis tumor resection and reconstruction is a complex surgical procedure that poses challenges in soft tissue reconstruction despite advancements in stabilizing pelvic structure. This study aims to investigate the potential of using Polyetheretherketone (PEEK) material in repairing and reconstructing soft tissues surrounding pelvic implants. Specifically, the study focuses on exploring the effectiveness of 3D printed porous PEEK material in promoting cell growth and adhesion. The interaction between PEEK materials with different pore sizes (200, 400, 600 µm) and different specifications (through-hole (T)/non-through-hole (C)) is evaluated by cell experiments and animal experiments. The soft tissue ingrowth potential of PEEK materials is evaluated by cell growth and adhesion observation. The findings indicate that PEEK material, particularly the T400 variant, exhibits stronger interaction with muscle tissue compared to its interaction with bone and fibrous tissue. The moderately sized pores present in the T400 material facilitate enhanced cell adhesion and penetration, thereby promoting cell growth and differentiation. PEEK materials with through-hole structures show promise for applications involving the repair and reconstruction of soft tissues and muscle tissue. The study provides valuable insights into the development and application of biomedical materials, specifically PEEK, contributing to the advancement of pelvic tumor resection and reconstruction techniques.
Collapse
Affiliation(s)
- Zibo Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Zenghuai Li
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Donglai Wang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Jiangang Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Qi Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| |
Collapse
|
3
|
You P, Sun H, Chen H, Li C, Mao Y, Zhang T, Yang H, Dong H. Composite bioink incorporating cell-laden liver decellularized extracellular matrix for bioprinting of scaffolds for bone tissue engineering. BIOMATERIALS ADVANCES 2024; 165:214017. [PMID: 39236580 DOI: 10.1016/j.bioadv.2024.214017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
The field of bone tissue engineering (BTE) has witnessed a revolutionary breakthrough with the advent of three-dimensional (3D) bioprinting technology, which is considered an ideal choice for constructing scaffolds for bone regeneration. The key to realizing scaffold biofunctions is the selection and design of an appropriate bioink, and existing bioinks have significant limitations. In this study, a composite bioink based on natural polymers (gelatin and alginate) and liver decellularized extracellular matrix (LdECM) was developed and used to fabricate scaffolds for BTE using 3D bioprinting. Through in vitro studies, the concentration of LdECM incorporated into the bioink was optimized to achieve printability and stability and to improve the proliferation and osteogenic differentiation of loaded rat bone mesenchymal stem cells (rBMSCs). Furthermore, in vivo experiments were conducted using a Sprague Dawley rat model of critical-sized calvarial defects. The proposed rBMSC-laden LdECM-gelatin-alginate scaffold, bioprinted layer-by-layer, was implanted in the rat calvarial defect and the development of new bone growth was studied for four weeks. The findings showed that the proposed bioactive scaffolds facilitated angiogenesis and osteogenesis at the defect site. The findings of this study suggest that the developed rBMSC-laden LdECM-gelatin-alginate bioink has great potential for clinical translation and application in solving bone regeneration problems.
Collapse
Affiliation(s)
- Pengyue You
- Department of Stomatology, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing 100730, China
| | - Hang Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing 100730, China
| | - Haotian Chen
- Department of Stomatology, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing 100730, China
| | - Changcan Li
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing 100730, China
| | - Tao Zhang
- Department of Stomatology, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing 100730, China.
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing 100730, China.
| | - Haitao Dong
- Department of Stomatology, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing 100730, China.
| |
Collapse
|
4
|
Mukasheva F, Adilova L, Dyussenbinov A, Yernaimanova B, Abilev M, Akilbekova D. Optimizing scaffold pore size for tissue engineering: insights across various tissue types. Front Bioeng Biotechnol 2024; 12:1444986. [PMID: 39600888 PMCID: PMC11588461 DOI: 10.3389/fbioe.2024.1444986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Scaffold porosity is a critical factor in replicating the complex in vivo microenvironment, directly influencing cellular interactions, migration, nutrient transfer, vascularization, and the formation of functional tissues. For optimal tissue formation, scaffold design must account for various parameters, including material composition, morphology, mechanical properties, and cellular compatibility. This review highlights the importance of interconnected porosity and pore size, emphasizing their impact on cellular behavior and tissue formation across several tissue engineering domains, such as skin, bone, cardiovascular, and lung tissues. Specific pore size ranges enhance scaffold functionality for different tissues: small pores (∼1-2 µm) aid epidermal cell attachment in skin regeneration, moderate pores (∼2-12 µm) support dermal migration, and larger pores (∼40-100 µm) facilitate vascular structures. For bone tissue engineering, multi-layered scaffolds with smaller pores (50-100 µm) foster cell attachment, while larger pores (200-400 µm) enhance nutrient diffusion and angiogenesis. Cardiovascular and lung tissues benefit from moderate pore sizes (∼25-60 µm) to balance cell integration and nutrient diffusion. By addressing critical design challenges and optimizing pore size distributions, this review provides insights into scaffold innovations, ultimately advancing tissue regeneration strategies.
Collapse
Affiliation(s)
- Fariza Mukasheva
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Laura Adilova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Aibek Dyussenbinov
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Bota Yernaimanova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Madi Abilev
- Department of Analytical, Colloid Chemistry and Technology of Rare Elements, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Dana Akilbekova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
5
|
Li T, Zhang X, Hu Y, Gao X, Yao X, Xu Z. Development of gelatin-methacryloyl composite carriers for bone morphogenetic Protein-2 delivery: A potential strategy for spinal fusion. J Biomater Appl 2024; 39:195-206. [PMID: 38877801 DOI: 10.1177/08853282241258302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
To reduce the risk of nonunion after spinal fusion surgery, the in situ transplantation of bone marrow mesenchymal stem cells (BMSCs) induced toward osteogenic differentiation by bone morphogenetic protein-2 (BMP2) has been proven effective. However, the current biological agents used for transplantation have limitations, such as a short half-life and low bioavailability. To address this, our study utilized a safe and effective gelatin-methacryloyl (GelMA) as a carrier for BMP2. In vitro, experiments were conducted to observe the ability of this composite vehicle to induce osteogenic differentiation of BMSCs. The results showed that the GelMA hydrogel, with its critical properties and controlled release performance of BMP2, exhibited a slow release of BMP2 over 30 days. Moreover, the GelMA hydrogel not only enhanced the proliferation activity of BMSCs but also significantly promoted their osteogenic differentiation ability, surpassing the BMP2 effects. To investigate the potential of the GelMA-BMP2 composite vehicle, a rabbit model was employed to explore its ability to induce in situ intervertebral fusion by BMSCs. Transplantation experiments in rabbits demonstrated the effective induction of intervertebral bone fusion by the GelMA-BMP2-BMSC composite vehicle. In conclusion, the GelMA-BMP2-BMSC composite vehicle shows promising prospects in preclinical translational therapy for spinal intervertebral fusion. It addresses the limitations of current biological agents and offers a controlled release of BMP2, enhancing the proliferation and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Tao Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, PR China
| | - Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, PR China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, PR China
| | - Xin Yao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, PR China
| | - Zhengwei Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Shaanxi, PR China
| |
Collapse
|
6
|
Jin Z, Huang X, Tan W, Luo X, Cen L, Zhou Y. Synergetic effect of 3D porous microsphere structure and activation of adenosine A2B receptor signal on promoting osteogenic differentiation of BMSCs. BIOMATERIALS ADVANCES 2023; 151:213457. [PMID: 37172432 DOI: 10.1016/j.bioadv.2023.213457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Biodegradable microspheres offer great potential as functional building blocks for bottom-up bone tissue engineering. However, it remains challenging to understand and regulate cell behaviors in fabrication of injectable bone microtissues using microspheres. The study aims to develop an adenosine functionalized poly (lactide-co-glycolide) (PLGA) microsphere to enhance cell loading efficiency and inductive osteogenesis potential, and subsequently to investigate adenosine signaling-mediated osteogenic differentiation in cells grown on three-dimensional (3D) microspheres and flat control. Adenosine was loaded on PLGA porous microspheres via polydopamine coating, and the cell adhesion and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were improved on these microspheres. It was found that adenosine A2B receptor (A2BR) was further activated by adenosine treatment, which consequently enhanced osteogenic differentiation of BMSCs. This effect was more obvious on 3D microspheres compared to 2D flats. However, the promotion of osteogenesis on the 3D microspheres was not eliminated by blocking the A2BR with antagonist. Finally, adenosine functionalized microspheres could fabricate injectable microtissues in vitro, and improve cell delivery and osteogenic differentiation after injection in vivo. Therefore, it is considered that adenosine loaded PLGA porous microspheres will be of good value in minimally invasive injection surgery and bone tissue repair.
Collapse
Affiliation(s)
- Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xing Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
7
|
Peng W, Liu Y, Wang C. Definition, measurement, and function of pore structure dimensions of bioengineered porous bone tissue materials based on additive manufacturing: A review. Front Bioeng Biotechnol 2023; 10:1081548. [PMID: 36686223 PMCID: PMC9845791 DOI: 10.3389/fbioe.2022.1081548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Bioengineered porous bone tissue materials based on additive manufacturing technology have gradually become a research hotspot in bone tissue-related bioengineering. Research on structural design, preparation and processing processes, and performance optimization has been carried out for this material, and further industrial translation and clinical applications have been implemented. However, based on previous studies, there is controversy in the academic community about characterizing the pore structure dimensions of porous materials, with problems in the definition logic and measurement method for specific parameters. In addition, there are significant differences in the specific morphological and functional concepts for the pore structure due to differences in defining the dimensional characterization parameters of the pore structure, leading to some conflicts in perceptions and discussions among researchers. To further clarify the definitions, measurements, and dimensional parameters of porous structures in bioengineered bone materials, this literature review analyzes different dimensional characterization parameters of pore structures of porous materials to provide a theoretical basis for unified definitions and the standardized use of parameters.
Collapse
Affiliation(s)
- Wen Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Yami Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Cheng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Cheng Wang,
| |
Collapse
|
8
|
Wu Y, Yang L, Chen L, Geng M, Xing Z, Chen S, Zeng Y, Zhou J, Sun K, Yang X, Shen B. Core-Shell Structured Porous Calcium Phosphate Bioceramic Spheres for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47491-47506. [PMID: 36251859 DOI: 10.1021/acsami.2c15614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adequate new bone regeneration in bone defects has always been a challenge as it requires excellent and efficient osteogenesis. Calcium phosphate (CaP) bioceramics, including hydroxyapatite (HA) and biphasic calcium phosphates (BCPs), have been extensively used in clinical bone defect filling due to their good osteoinductivity and biodegradability. Here, for the first time, we designed and fabricated two porous CaP bioceramic granules with core-shell structures, named in accordance with their composition as BCP@HA and HA@BCP (core@shell). The spherical shape and the porous structure of these granules were achieved by the calcium alginate gel molding technology combined with a H2O2 foaming process. These granules could be stacked to build a porous structure with a porosity of 65-70% and a micropore size distribution between 150 and 450 μm, which is reported to be good for new bone ingrowth. In vitro experiments confirmed that HA@BCP bioceramic granules could promote the proliferation and osteogenic ability when cocultured with bone marrow mesenchymal stem cells, while inhibiting the differentiation of RAW264.7 cells into osteoclasts. In vivo, 12 weeks of implantation in a critical-sized femoral bone defect animal model showed a higher bone volume fraction and bone mineral density in the HA@BCP group than in the BCP@HA or pure HA or BCP groups. From histological analysis, we discovered that the new bone tissue in the HA@BCP group was invading from the surface to the inside of the granules, and most of the bioceramic phase was replaced by the new bone. A higher degree of vascularization at the defect region repaired by HA@BCP was revealed by 3D microvascular perfusion angiography in terms of a higher vessel volume fraction. The current study demonstrated that the core-shell structured HA@BCP bioceramic granules could be a promising candidate for bone defect repair.
Collapse
Affiliation(s)
- Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Chen
- Analytical & Testing Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064, China
| | - Mengyu Geng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhengyi Xing
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhan Zhou
- Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaibo Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
10
|
Xu H, Wang J, Wu D, Qin D. A hybrid hydrogel encapsulating human umbilical cord mesenchymal stem cells enhances diabetic wound healing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:60. [PMID: 35849219 PMCID: PMC9293866 DOI: 10.1007/s10856-022-06681-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/19/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Diabetic wound is a severe complication of diabetes. Stem cell is considered as a promising therapy for diabetic skin wounds. Hydrogel can supply niche for cells adhesion and survival to improve the efficacy of stem cell therapy, but the development of hydrogel with suitable properties remains a great challenge. Thus, our study was conducted to combine an optimized hydrogel with stem cell to improve complex diabetic wound treatment. METHODS This study constructed a hydrogel with low toxicity and adjustable mechanical properties from gelatin methacrylate (GelMA) and chitosan-catechol (Chi-C), and encapsulated human umbilical cord-mesenchymal stem cells (hUMSCs) to repair full-thickness diabetic wound. RESULTS We explored the relationship between mechanical stiffness and cell proliferation and differentiation potency, and found 10% GelMA hydrogel with an optimal stiffness improved hUMSCs adhesion, proliferation, and differentiation potency maintenance in vitro. Assistant with optimized hydrogel encapsulating hUMSCs, diabetic wound healing process was greatly accelerated, including accelerated wound closure, inhibited secretion of inflammatory factors TNF-α and IL-1β, promoted vascular regeneration and collagen deposition after treatment of hUMSCs. CONCLUSIONS The optimized hydrogel encapsulating hUMSCs improved diabetic wound healing, and has a broad implication for the treatment of diabetic complication. Diabetic wound is a severe complication of diabetes. Stem cell is considered as a promising therapy for diabetic skin wounds. Hydrogel can supply niche for cells adhesion and survival to improve the efficacy of stem cell therapy. This study constructed a hydrogel with low toxicity and adjustable mechanical properties from gelatin methacrylate (GelMA) and chitosan-catechol (Chi-C), and encapsulated human umbilical cord-mesenchymal stem cells (hUMSCs) to repair full-thickness diabetic wound. Hydrogel of 10% GelMA with an optimal stiffness improved hUMSCs adhesion, proliferation, and differentiation potency maintenance in vitro. Assistant with optimized hydrogel encapsulating hUMSCs, diabetic wound healing process was greatly accelerated, including accelerated wound closure, inhibited secretion of inflammatory factors TNF-α and IL-1β, promoted vascular regeneration and collagen deposition after treatment of hUMSCs. The study supplies an alternative treatment for diabetic complication. Hydrogel-hUMSCs combined treatment accelerates wound closure in diabetic mice. A. Representative images of wounds during 21-day in vivo experiments. B. Quantification of wound closure rate (%) over 21-day period. C. HE staining of wounds at days 7, 14 and 21. The bar corresponds to 200 μm.
Collapse
Affiliation(s)
- Hongjie Xu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510663, China
| | - Jingjing Wang
- Department of Neurology, Weihai Central Hospital, Weihai, China
| | - Di Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510663, China
| | - Dajiang Qin
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510663, China.
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China.
| |
Collapse
|
11
|
Xue N, Ding X, Huang R, Jiang R, Huang H, Pan X, Min W, Chen J, Duan JA, Liu P, Wang Y. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals (Basel) 2022; 15:879. [PMID: 35890177 PMCID: PMC9324138 DOI: 10.3390/ph15070879] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Bones play an important role in maintaining exercise and protecting organs. Bone defect, as a common orthopedic disease in clinics, can cause tremendous damage with long treatment cycles. Therefore, the treatment of bone defect remains as one of the main challenges in clinical practice. Today, with increased incidence of bone disease in the aging population, demand for bone repair material is high. At present, the method of clinical treatment for bone defects including non-invasive therapy and invasive therapy. Surgical treatment is the most effective way to treat bone defects, such as using bone grafts, Masquelet technique, Ilizarov technique etc. In recent years, the rapid development of tissue engineering technology provides a new treatment strategy for bone repair. This review paper introduces the current situation and challenges of clinical treatment of bone defect repair in detail. The advantages and disadvantages of bone tissue engineering scaffolds are comprehensively discussed from the aspect of material, preparation technology, and function of bone tissue engineering scaffolds. This paper also summarizes the 3D printing technology based on computer technology, aiming at designing personalized artificial scaffolds that can accurately fit bone defects.
Collapse
Affiliation(s)
- Nannan Xue
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Xiaofeng Ding
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Rizhong Huang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Ruihan Jiang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Heyan Huang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Xin Pan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Wen Min
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (N.X.); (X.D.); (R.H.); (R.J.); (H.H.); (W.M.); (J.C.)
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; (X.P.); (J.-A.D.)
- Burns Injury and Reconstructive Surgery Research, ANZAC Research Institute, University of Sydney, Concord Repatriation General Hospital, Concord 2137, Australia
| |
Collapse
|
12
|
Lv Z, Dong C, Zhang T, Zhang S. Hydrogels in Spinal Cord Injury Repair: A Review. Front Bioeng Biotechnol 2022; 10:931800. [PMID: 35800332 PMCID: PMC9253563 DOI: 10.3389/fbioe.2022.931800] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Traffic accidents and falling objects are responsible for most spinal cord injuries (SCIs). SCI is characterized by high disability and tends to occur among the young, seriously affecting patients' lives and quality of life. The key aims of repairing SCI include preventing secondary nerve injury, inhibiting glial scarring and inflammatory response, and promoting nerve regeneration. Hydrogels have good biocompatibility and degradability, low immunogenicity, and easy-to-adjust mechanical properties. While providing structural scaffolds for tissues, hydrogels can also be used as slow-release carriers in neural tissue engineering to promote cell proliferation, migration, and differentiation, as well as accelerate the repair of damaged tissue. This review discusses the characteristics of hydrogels and their advantages as delivery vehicles, as well as expounds on the progress made in hydrogel therapy (alone or combined with cells and molecules) to repair SCI. In addition, we discuss the prospects of hydrogels in clinical research and provide new ideas for the treatment of SCI.
Collapse
Affiliation(s)
- Zhenshan Lv
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianjiao Zhang
- Medical Insurance Management Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| |
Collapse
|
13
|
Nazar V, Kashi M, Haghbin Nazarpak M, Shahryari E, Mehrjoo M. Gelatin hydrogel reinforced by graphene oxide grafted chitosan for cartilage tissue engineering application. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2085704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vida Nazar
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Mana Kashi
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Elham Shahryari
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran
| | - Morteza Mehrjoo
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
- National cell bank of Iran, Pasteur institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova ML, Teodori L, Pasquo A, Di Nardo P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. MICROMACHINES 2022; 13:mi13050780. [PMID: 35630247 PMCID: PMC9144100 DOI: 10.3390/mi13050780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Failure of tissues and organs resulting from degenerative diseases or trauma has caused huge economic and health concerns around the world. Tissue engineering represents the only possibility to revert this scenario owing to its potential to regenerate or replace damaged tissues and organs. In a regeneration strategy, biomaterials play a key role promoting new tissue formation by providing adequate space for cell accommodation and appropriate biochemical and biophysical cues to support cell proliferation and differentiation. Among other physical cues, the architectural features of the biomaterial as a kind of instructive stimuli can influence cellular behaviors and guide cells towards a specific tissue organization. Thus, the optimization of biomaterial micro/nano architecture, through different manufacturing techniques, is a crucial strategy for a successful regenerative therapy. Over the last decades, many micro/nanostructured biomaterials have been developed to mimic the defined structure of ECM of various soft and hard tissues. This review intends to provide an overview of the relevant studies on micro/nanostructured scaffolds created for soft and hard tissue regeneration and highlights their biological effects, with a particular focus on striated muscle, cartilage, and bone tissue engineering applications.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| | - Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Arsalan Ul Haq
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Fabio De Matteis
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento Ingegneria Industriale, Università Degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Emanuela Tamburri
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Letizia Terranova
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Alessandra Pasquo
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
| | - Paolo Di Nardo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| |
Collapse
|
15
|
Regeneration of Articular Cartilage Using Membranes of Polyester Scaffolds in a Rabbit Model. Pharmaceutics 2022; 14:pharmaceutics14051016. [PMID: 35631602 PMCID: PMC9143412 DOI: 10.3390/pharmaceutics14051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
One promising method for cartilage regeneration involves combining known methods, such as the microfracture technique with biomaterials, e.g., scaffolds (membranes). The most important feature of such implants is their appropriate rate of biodegradation, without the production of toxic metabolites. This study presents work on two different membranes made of polyester (L-lactide-co-ε-caprolactone-PLCA) named “PVP and “Z”. The difference between them was the use of different pore precursors—polyvinylpyrrolidone in the “PVP” scaffold and gelatin in the “Z” scaffold. These were implemented in the articular cartilage defects of rabbit knee joints (defects were created for the purpose of the study). After 8, 16, and 24 weeks of observation, and the subsequent termination of the animals, histopathology and gel permeation chromatography (GPC) examinations were performed. Statistical analysis proved that the membranes support the regeneration process. GPC testing proved that the biodegradation process is progressing exponentially, causing the membranes to degrade at the appropriate time. The surgical technique we used meets all the requirements without causing the membrane to migrate after implantation. The “PVP” membrane is better due to the fact that after 24 weeks of observation there was a statistical trend for higher histological ratings. It is also better because it is easier to implant due to its lower fragility then membrane “Z”. We conclude that the selected membranes seem to support the regeneration of articular cartilage in the rabbit model.
Collapse
|
16
|
Ataie M, Nourmohammadi J, Seyedjafari E. Carboxymethyl carrageenan immobilized on 3D-printed polycaprolactone scaffold for the adsorption of calcium phosphate/strontium phosphate adapted to bone regeneration. Int J Biol Macromol 2022; 206:861-874. [PMID: 35314263 DOI: 10.1016/j.ijbiomac.2022.03.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
Three dimensional (3D) substrates based on natural and synthetic polymers enhance the osteogenic and mechanical properties of the bone tissue engineering scaffolds. Here, a novel bioactive composite scaffolds from polycaprolactone /kappa-carrageenan were developed for bone regeneration applications. 3D PCL scaffolds were fabricated by 3D printing method followed by coating with carboxymethyl kappa-carrageenan. This organic film was used to create calcium and strontium phosphate layers via a modified alternate soaking process in CaCl 2 /SrCl 2 and Na2HPO4 solutions in which calcium ions were replaced by strontium, with different amounts of strontium in the solutions. Various characterization techniques were executed to analyze the effects of strontium ion on the scaffold properties. The morphological results demonstrated the highly porous with interconnected pores and uniform pore sizes scaffolds. It was indicated that the highest crystallinity and compressive strength were obtained when 100% CaCl2 was replaced by SrCl2 in the solution (P-C-Sr). Incorporation of Sr onto the structure increased the degradation rate of the scaffolds. Mesenchymal stem cells (MSCs) culture on the scaffolds showed that Sr effectively improved attachment and viability of the MSCs and accelerated osteogenic differentiation as revealed by Alkaline phosphatase activity, calcium content and Real Time-Reverse transcription polymerase chain reaction assays.
Collapse
Affiliation(s)
- Maryam Ataie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Three-dimensional scaffolds for tissue bioengineering cartilages. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Stocco E, Porzionato A, De Rose E, Barbon S, Caro RD, Macchi V. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. J Tissue Eng 2022; 13:20417314211065860. [PMID: 35096363 PMCID: PMC8793124 DOI: 10.1177/20417314211065860] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Meniscal tears are a frequent orthopedic injury commonly managed by conservative
strategies to avoid osteoarthritis development descending from altered
biomechanics. Among cutting-edge approaches in tissue engineering, 3D printing
technologies are extremely promising guaranteeing for complex biomimetic
architectures mimicking native tissues. Considering the anisotropic
characteristics of the menisci, and the ability of printing over structural
control, it descends the intriguing potential of such vanguard techniques to
meet individual joints’ requirements within personalized medicine. This
literature review provides a state-of-the-art on 3D printing for meniscus
reconstruction. Experiences in printing materials/technologies, scaffold types,
augmentation strategies, cellular conditioning have been compared/discussed;
outcomes of pre-clinical studies allowed for further considerations. To date,
translation to clinic of 3D printed meniscal devices is still a challenge:
meniscus reconstruction is once again clear expression of how the integration of
different expertise (e.g., anatomy, engineering, biomaterials science, cell
biology, and medicine) is required to successfully address native tissues
complexities.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Enrico De Rose
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| |
Collapse
|
19
|
Zhao R, Shang T, Yuan B, Zhu X, Zhang X, Yang X. Osteoporotic bone recovery by a bamboo-structured bioceramic with controlled release of hydroxyapatite nanoparticles. Bioact Mater 2022; 17:379-393. [PMID: 35386445 PMCID: PMC8964988 DOI: 10.1016/j.bioactmat.2022.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022] Open
Abstract
While most bone defects can be repaired spontaneously, the healing process can be complicated due to insufficient bone regeneration when osteoporosis occurs. Synthetic materials that intrinsically stimulate bone formation without inclusion of exogenous cells or growth factors represent a highly desirable alternative to current grafting strategies for the management of osteoporotic defects. Herein, we developed a series of hydroxyapatite bioceramics composed of a microwhiskered scaffold (wHA) reinforced with multiple layers of releasable hydroxyapatite nanoparticles (nHA). These novel bioceramics (nwHA) are tunable to optimize the loading amount of nHA for osteoporotic bone formation. The utility of nwHA bioceramics for the proliferation or differentiation of osteoporotic osteoblasts in vitro is demonstrated. A much more compelling response is seen when bioceramics are implanted in critical-sized femur defects in osteoporotic rats, as nwHA bioceramics promote significantly higher bone regeneration and delay adjacent bone loss. Moreover, the nwHA bioceramics loaded with a moderate amount of nHA can induce new bone formation with a higher degree of ossification and homogenization. Two types of osteogenesis inside the nwHA bioceramic pores were discovered for the first time, depending on the direction of growth of the new bone. The current study recommends that these tailored hybrid micro/nanostructured bioceramics represent promising candidates for osteoporotic bone repair.
Collapse
|
20
|
Wang M, Li B, Liu Y, Tang L, Zhang Y, Xie Q. A Novel Bionic Extracellular Matrix Polymer Scaffold Enhanced by Calcium Silicate for Bone Tissue Engineering. ACS OMEGA 2021; 6:35727-35737. [PMID: 34984303 PMCID: PMC8717537 DOI: 10.1021/acsomega.1c05623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
A novel porous calcium silicate (CS)-enhanced small intestinal submucosa (SIS) scaffold was prepared by freeze-drying to mimic the natural extracellular matrix environment for bone tissue engineering. The micro-morphology, physicochemical properties, biological characteristics, and effects on osteogenic differentiation in vitro were explored; the effects on promoting bone formation in vivo were evaluated. The composite scaffold had an ideal three-dimensional porous structure. The amount of calcium silicate played a significant role in improving mechanical properties and promoting osteogenic differentiation. The SIS/2CS scaffold promoted proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells; it also significantly increased osteogenesis in vivo. This novel composite polymer scaffold has potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Mei Wang
- Department
of Prosthodontics, Peking University School
and Hospital of Stomatology & National Center of Stomatology &National
Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Bowen Li
- Department
of Prosthodontics, Peking University School
and Hospital of Stomatology & National Center of Stomatology &National
Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Yuhua Liu
- Department
of Prosthodontics, Peking University School
and Hospital of Stomatology & National Center of Stomatology &National
Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Lin Tang
- Department
of Prosthodontics, Peking University School
and Hospital of Stomatology & National Center of Stomatology &National
Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Yi Zhang
- Department
of General Dentistry II, Peking University
School and Hospital of Stomatology & National Center of Stomatology
&National Clinical Research Center for Oral Diseases & National
Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Qiufei Xie
- Department
of Prosthodontics, Peking University School
and Hospital of Stomatology & National Center of Stomatology &National
Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| |
Collapse
|
21
|
Camacho P, Fainor M, Seims KB, Tolbert JW, Chow LW. Fabricating spatially functionalized 3D-printed scaffolds for osteochondral tissue engineering. J Biol Methods 2021; 8:e146. [PMID: 33889653 PMCID: PMC8054918 DOI: 10.14440/jbm.2021.353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/30/2020] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing of biodegradable polymers has rapidly become a popular approach to create scaffolds for tissue engineering. This technique enables fabrication of complex architectures and layer-by-layer spatial control of multiple components with high resolution. The resulting scaffolds can also present distinct chemical groups or bioactive cues on the surface to guide cell behavior. However, surface functionalization often includes one or more post-fabrication processing steps, which typically produce biomaterials with homogeneously distributed chemistries that fail to mimic the biochemical organization found in native tissues. As an alternative, our laboratory developed a novel method that combines solvent-cast 3D printing with peptide-polymer conjugates to spatially present multiple biochemical cues in a single scaffold without requiring post-fabrication modification. Here, we describe a detailed, stepwise protocol to fabricate peptide-functionalized scaffolds and characterize their physical architecture and biochemical spatial organization. We used these 3D-printed scaffolds to direct human mesenchymal stem cell differentiation and osteochondral tissue formation by controlling the spatial presentation of cartilage-promoting and bone-promoting peptides. This protocol also describes how to seed scaffolds and evaluate matrix deposition driven by peptide organization.
Collapse
Affiliation(s)
- Paula Camacho
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Matthew Fainor
- Integrated Degree in Engineering, Arts and Sciences Program, Lehigh University, Bethlehem, PA 18015, USA
| | - Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - John W Tolbert
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Lesley W Chow
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA.,Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
22
|
Huang Z, Wan Y, Zhu X, Zhang P, Yang Z, Yao F, Luo H. Simultaneous engineering of nanofillers and patterned surface macropores of graphene/hydroxyapatite/polyetheretherketone ternary composites for potential bone implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111967. [PMID: 33812595 DOI: 10.1016/j.msec.2021.111967] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Incorporating bioactive nanofillers and creating porous surfaces are two common strategies used to improve the tissue integration of polyetheretherketone (PEEK) material. However, few studies have reported the combined use of both strategies to modify PEEK. Herein, for the first time, dual nanoparticles of graphene oxide (GO) and hydroxyapatite (HAp) were incorporated into PEEK matrix to obtain ternary composites that were laser machined to create macropores with diameters ranging from 200 μm to 600 μm on the surfaces. The surface morphology and chemistry, mechanical properties, and cellular responses of the composites were investigated. The results show that micropatterned pores with a depth of 50 μm were created on the surfaces of the composites, which do not significantly affect the mechanical properties of the resultant composites. More importantly, the incorporation of GO and HAp significantly improves the cell adhesion and proliferation on the surface of PEEK. Compared to the smooth surface composite, the composites with macroporous surface exhibit markedly enhanced cell viability. The combined use of nanofillers and surface macropores may be a promising way of improving tissue integration of PEEK for bone implants.
Collapse
Affiliation(s)
- Zhihuan Huang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangbo Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Peibiao Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Fanglian Yao
- Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
23
|
Wasyłeczko M, Sikorska W, Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. MEMBRANES 2020; 10:E348. [PMID: 33212901 PMCID: PMC7698415 DOI: 10.3390/membranes10110348] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 str., 02-109 Warsaw, Poland; (W.S.); (A.C.)
| | | | | |
Collapse
|
24
|
Niemczyk-Soczynska B, Gradys A, Sajkiewicz P. Hydrophilic Surface Functionalization of Electrospun Nanofibrous Scaffolds in Tissue Engineering. Polymers (Basel) 2020; 12:E2636. [PMID: 33182617 PMCID: PMC7697875 DOI: 10.3390/polym12112636] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Electrospun polymer nanofibers have received much attention in tissue engineering due to their valuable properties such as biocompatibility, biodegradation ability, appropriate mechanical properties, and, most importantly, fibrous structure, which resembles the morphology of extracellular matrix (ECM) proteins. However, they are usually hydrophobic and suffer from a lack of bioactive molecules, which provide good cell adhesion to the scaffold surface. Post-electrospinning surface functionalization allows overcoming these limitations through polar groups covalent incorporation to the fibers surface, with subsequent functionalization with biologically active molecules or direct deposition of the biomolecule solution. Hydrophilic surface functionalization methods are classified into chemical approaches, including wet chemical functionalization and covalent grafting, a physiochemical approach with the use of a plasma treatment, and a physical approach that might be divided into physical adsorption and layer-by-layer assembly. This review discusses the state-of-the-art of hydrophilic surface functionalization strategies of electrospun nanofibers for tissue engineering applications. We highlighted the major advantages and drawbacks of each method, at the same time, pointing out future perspectives and solutions in the hydrophilic functionalization strategies.
Collapse
Affiliation(s)
- Beata Niemczyk-Soczynska
- Institute of Fundamental Technological Research, Lab. Polymers & Biomaterials, Polish Academy of Sciences Pawinskiego 5b St., 02-106 Warsaw, Poland; (A.G.); (P.S.)
| | | | | |
Collapse
|
25
|
Wang L, Kang Y, Chen S, Mo X, Jiang J, Yan X, Zhu T, Zhao J. Macroporous 3D Scaffold with Self-Fitting Capability for Effectively Repairing Massive Rotator Cuff Tear. ACS Biomater Sci Eng 2020; 7:904-915. [PMID: 33715366 DOI: 10.1021/acsbiomaterials.0c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The postoperative retear rate of direct repair of massive rotator cuff tear has risen up to 40% because of the dissatisfied tendon-to-bone healing and poor regenerative potential of remnant rotator cuff tissue. A biological scaffold that connects the remnant rotator cuff tissue and bone might be a promising substitute. In the present study, we have developed a macroporous three-dimensional scaffold poly(ester-urethane)urea (PEUU), with self-fitting capability employing thermally induced phase separation (TIPS) technique. The scaffold provides oriented connected macropores for cells migration, and promoted tendon-to-bone healing on the basis of surgical repair. The scaffolds were characterized by scanning electron microscopy, stress-strain test and cell biocompatibility study. In vitro studies exhibited that PEUU scaffold with suitable elastic mechanical properties can better support proliferation and migration of rabbit bone mesenchymal stem cells (RBMSCs). After three months postreconstruction of massive rotator cuff tear in a rabbit model using PEUU scaffold, there was complete regeneration of rotator cuff with physical tendon-to-bone interface and continuous tendon tissue, as observed from histological analysis. Further, biomechanical testing demonstrated that rotator cuff induced by PEUU scaffold had no significant difference as compared to normal rotator cuff. This macroporous, mechanically matched scaffold is potentially suitable for the application in massive rotator cuff repair. In conclusion, this study demonstrates the high efficiency of the macroporous 3D scaffold with self-fitting capability in facilitating rotator cuff regeneration.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Yuhao Kang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Sihao Chen
- Multidisciplinary Center for Advanced Materials, Advanced Research Institute, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 201620, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, PR China
| | - Jia Jiang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Xiaoyu Yan
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Tonghe Zhu
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, PR China
| |
Collapse
|
26
|
Yao Q, Liu Y, Pan Y, Miszuk JM, Sun H. One-pot porogen free method fabricated porous microsphere-aggregated 3D PCL scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2020; 108:2699-2710. [PMID: 32154997 DOI: 10.1002/jbm.b.34601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/13/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) scaffolds with interconnected, hierarchically structured pores, and biomimetic nanostructures are desirable for tissue engineering, where preparation with a facile and biocompatible strategy remains challenging. In the present work, an innovative porous microspheres-aggregated 3D PCL scaffold with macropores, micropores, and nanofibrous-like structures was fabricated through a one-pot thermally induced phase separation (TIPS) method without the use of any porogen or specific instruments. Importantly, the porosity, pore size, and mechanical properties of our scaffolds were tailorable through tuning of the polymer concentration. Interestingly, the bioactivity of our 3D PCL scaffolds was significantly improved, as abundant apatite-like layers were formed on the 3D porous scaffolds, while no obvious apatite was observed on the 2D flat PCL film. Moreover, the high surface area attributed to the hierarchical macro/micro/nanostructure enabled our 3D porous scaffold to serve as a drug delivery depot for sustained release of both small molecule drug (phenamil) and protein (BMP2). In addition to sustained drug release, the hierarchical structure and high mechanical properties also contribute to significantly improving BMP2-induced osteogenic differentiation. In summary, we developed a novel PCL porous scaffold through a facile, one-pot TIPS method and demonstrated its promising potential application in large bone defect repair.
Collapse
Affiliation(s)
- Qingqing Yao
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Yu Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yining Pan
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Advanced Materials for Nano-Bio Applications, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jacob M Miszuk
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Hongli Sun
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
27
|
Gohi BFCA, Liu XY, Zeng HY, Xu S, Ake KMH, Cao XJ, Zou KM, Namulondo S. Enhanced efficiency in isolation and expansion of hAMSCs via dual enzyme digestion and micro-carrier. Cell Biosci 2020; 10:2. [PMID: 31921407 PMCID: PMC6945441 DOI: 10.1186/s13578-019-0367-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
A two-stage method of obtaining viable human amniotic stem cells (hAMSCs) in large-scale is described. First, human amniotic stem cells are isolated via dual enzyme (collagenase II and DNAase I) digestion. Next, relying on a culture of the cells from porous chitosan-based microspheres in vitro, high purity hAMSCs are obtained in large-scale. Dual enzymatic (collagenase II and DNase I) digestion provides a primary cell culture and first subculture with a lower contamination rate, higher purity and a larger number of isolated cells. The obtained hAMSCs were seeded onto chitosan microspheres (CM), gelatin-chitosan microspheres (GCM) and collagen-chitosan microspheres (CCM) to produce large numbers of hAMSCs for clinical trials. Growth activity measurement and differentiation essays of hAMSCs were realized. Within 2 weeks of culturing, GCMs achieved over 1.28 ± 0.06 × 107 hAMSCs whereas CCMs and CMs achieved 7.86 ± 0.11 × 106 and 1.98 ± 0.86 × 106 respectively within this time. In conclusion, hAMSCs showed excellent attachment and viability on GCM-chitosan microspheres, matching the hAMSCs' normal culture medium. Therefore, dual enzyme (collagenase II and DNAase I) digestion may be a more useful isolation process and culture of hAMSCs on porous GCM in vitro as an ideal environment for the large-scale expansion of highly functional hAMSCs for eventual use in stem cell-based therapy.
Collapse
Affiliation(s)
- Bi Foua Claude Alain Gohi
- Biology and Chemical Engineering School, Panzhihua University, Panzhihua, 617000 Sichuan People’s Republic of China
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Xue-Ying Liu
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Green, Zhuzhou, China
- Packaging and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, 412007 Hunan China
| | - Hong-Yan Zeng
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Sheng Xu
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Kouassi Marius Honore Ake
- Faculty of Business Administration, Laval University, Pavillon Palasis-Prince, 2325 Rue de la Terrasse, G1V 0A6 Quebec City, Canada
| | - Xiao-Ju Cao
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Kai-Min Zou
- Biotechnology Institute, College of Chemical Engineering, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| | - Sheila Namulondo
- Institute of Comparative Literature and World Literature, College of Literature and Journalism, Xiangtan University, Xiangtan, 411105 Hunan People’s Republic of China
| |
Collapse
|
28
|
Silva JC, Moura CS, Borrecho G, Alves de Matos AP, Cabral JMS, Linhardt RJ, Ferreira FC. Effects of glycosaminoglycan supplementation in the chondrogenic differentiation of bone marrow- and synovial- derived mesenchymal stem/stromal cells on 3D-extruded poly (ε-caprolactone) scaffolds. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- João C. Silva
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Carla S. Moura
- CDRSP – Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, Portugal
| | - Gonçalo Borrecho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Caparica, Portugal
| | | | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
29
|
Silva JC, Moura CS, Borrecho G, de Matos APA, da Silva CL, Cabral JMS, Bártolo PJ, Linhardt RJ, Ferreira FC. Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(ɛ-Caprolactone) Scaffolds. Biotechnol J 2019; 15:e1900078. [PMID: 31560160 DOI: 10.1002/biot.201900078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/09/2019] [Indexed: 01/12/2023]
Abstract
Novel bioengineering strategies for the ex vivo fabrication of native-like tissue-engineered cartilage are crucial for the translation of these approaches to clinically manage highly prevalent and debilitating joint diseases. Bioreactors that provide different biophysical stimuli have been used in tissue engineering approaches aimed at enhancing the quality of the cartilage tissue generated. However, such systems are often highly complex, expensive, and not very versatile. In the current study, a novel, cost-effective, and customizable perfusion bioreactor totally fabricated by additive manufacturing (AM) is proposed for the study of the effect of fluid flow on the chondrogenic differentiation of human bone-marrow mesenchymal stem/stromal cells (hBMSCs) in 3D porous poly(ɛ-caprolactone) (PCL) scaffolds. hBMSCs are first seeded and grown on PCL scaffolds and hBMSC-PCL constructs are then transferred to 3D-extruded bioreactors for continuous perfusion culture under chondrogenic inductive conditions. Perfused constructs show similar cell metabolic activity and significantly higher sulfated glycosaminoglycan production (≈1.8-fold) in comparison to their non-perfused counterparts. Importantly, perfusion bioreactor culture significantly promoted the expression of chondrogenic marker genes while downregulating hypertrophy. This work highlights the potential of customizable AM platforms for the development of novel personalized repair strategies and more reliable in vitro models with a wide range of applications.
Collapse
Affiliation(s)
- João C Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal.,Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Carla S Moura
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, 2430-028, Portugal
| | - Gonçalo Borrecho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Paulo J Bártolo
- School of Mechanical and Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| |
Collapse
|
30
|
Jeznach O, Kolbuk D, Sajkiewicz P. Aminolysis of Various Aliphatic Polyesters in a Form of Nanofibers and Films. Polymers (Basel) 2019; 11:E1669. [PMID: 31614975 PMCID: PMC6835534 DOI: 10.3390/polym11101669] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Surface functionalization of polymer scaffolds is a method used to improve interactions of materials with cells. A frequently used method for polyesters is aminolysis reaction, which introduces free amine groups on the surface. In this study, nanofibrous scaffolds and films of three different polyesters-polycaprolactone (PCL), poly(lactide-co-caprolactone) (PLCL), and poly(l-lactide) (PLLA) were subjected to this type of surface modification under the same conditions. Efficiency of aminolysis was evaluated on the basis of ninhydrin tests and ATR-FTIR spectroscopy. Also, impact of this treatment on the mechanical properties, crystallinity, and wettability of polyesters was compared and discussed from the perspective of aminolysis efficiency. It was shown that aminolysis is less efficient in the case of nanofibers, particularly for PCL nanofibers. Our hypothesis based on the fundamentals of classical high speed spinning process is that the lower efficiency of aminolysis in the case of nanofibers is associated with the radial distribution of crystallinity of electrospun fiber with more crystalline skin, strongly inhibiting the reaction. Moreover, the water contact angle results demonstrate that the effect of free amino groups on wettability is very different depending on the type and the form of polymer. The results of this study can help to understand fundamentals of aminolysis-based surface modification.
Collapse
Affiliation(s)
- Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| |
Collapse
|
31
|
Sgarminato V, Tonda-Turo C, Ciardelli G. Reviewing recently developed technologies to direct cell activity through the control of pore size: From the macro- to the nanoscale. J Biomed Mater Res B Appl Biomater 2019; 108:1176-1185. [PMID: 31429201 DOI: 10.1002/jbm.b.34467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Scaffold pore size plays a fundamental role in the regeneration of new tissue since it has been shown to direct cell activity in situ. It is well known that cellular response changes in relation with pores diameter. Consequently, researchers developed efficient approaches to realize scaffolds with controllable macro-, micro-, and nanoporous architecture. In this context, new strategies aiming at the manufacturing of scaffolds with multiscale pore networks have emerged, in the attempt to mimic the complex hierarchical structures found in living systems. In this review, we aim at providing an overview of the fabrication methods currently adopted to realize scaffolds with controlled, multisized pores highlighting their specific influence on cellular activity.
Collapse
Affiliation(s)
- Viola Sgarminato
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy.,Department for Materials and Devices of the National Research Council, Institute for the Chemical and Physical Processes (CNR-IPCF UOS), Pisa, Italy
| |
Collapse
|
32
|
Camacho P, Busari H, Seims KB, Schwarzenberg P, Dailey HL, Chow LW. 3D printing with peptide-polymer conjugates for single-step fabrication of spatially functionalized scaffolds. Biomater Sci 2019; 7:4237-4247. [PMID: 31393469 DOI: 10.1039/c9bm00887j] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biodegradable polymer-based scaffolds are widely used to provide support during early stages of regeneration and can be functionalized with various chemical groups or bioactive cues to promote desired cellular behavior. However, these scaffolds are often modified post-fabrication, which can lead to undesired changes and homogeneously distributed chemistries that fail to mimic the spatial biochemical organization found in native tissues. To address these challenges, surface functionalization can be achieved by 3D printing with pre-functionalized biodegradable polymers, such as peptide-modified polymer conjugates, to control the deposition of preferred chemistries. Peptide-PCL conjugates were synthesized with the canonical cell adhesion peptide motif RGDS or its negative control RGES and 3D printed into scaffolds displaying one or both peptides. The peptides were also modified with bioorthogonal groups, biotin and azide, to visualize peptide concentration and location by labeling with complementary fluorophores. Peptide concentration on the scaffold surface increased with increasing peptide-PCL conjugate concentration added to the ink prior to 3D printing, and scaffolds printed with the highest RGDS(biotin)-PCL concentrations showed a significant increase in NIH3T3 fibroblast adhesion. To demonstrate spatial control of peptide functionalization, multiple printer heads were used to print both peptide-PCL conjugates into the same construct in alternating patterns. Cells preferentially attached and spread on RGDS(biotin)-PCL fibers compared to RGES(azide)-PCL fibers, illustrating how spatial functionalization can be used to influence local cell behavior within a single biomaterial. This presents a versatile platform to generate multifunctional biomaterials that can mimic the biochemical organization found in native tissues to support functional regeneration.
Collapse
Affiliation(s)
- Paula Camacho
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Hafiz Busari
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | - Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | | | - Hannah L Dailey
- Department of Mechanical Engineering and Mechanics, Bethlehem, PA, USA
| | - Lesley W Chow
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA. and Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
33
|
Yang S, Qian Z, Liu D, Wen N, Xu J, Guo X. Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration. Cell Tissue Bank 2019; 20:209-220. [PMID: 30854603 DOI: 10.1007/s10561-019-09760-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/03/2019] [Indexed: 12/20/2022]
Abstract
The treatment of articular cartilage defects has become a major clinical concern. Currently, additional efforts are necessary to develop effective methods to cure this disease. In this work, we combined gene therapy with tissue engineering methods to test their effect on cartilage repair. In in vitro experiments, we obtained C-type natriuretic peptide (CNP) gene-modified bone marrow-derived mesenchymal stem cells (BMSCs) by transfection with recombinant adenovirus containing the CNP gene and revealed that CNP gene-modified BMSCs had good chondrogenic differentiation ability. By the freeze-drying method, we successfully synthesized a chitosan/silk fibroin (CS/SF) porous scaffold, which had a suitable aperture size for chondrogenesis. Then, we loaded CNP gene-modified BMSCs onto CS/SF scaffolds and tested their effect on repairing full-thickness cartilage defects in rat joints. The gross morphology and histology examination results showed that the composite of the CNP gene-modified BMSCs and CS/SF scaffolds had better repair effects than those of the other three groups at each time point. Additionally, compared to the group with BMSCs and scaffolds, we found that there was more cartilage matrix in the CNP gene-modified BMSCs and CS/SF scaffolds group. Data obtained in the present study suggest that the composite of CNP gene-modified BMSCs and CS/SF scaffolds represent promising strategies for repairing focal cartilage lesions.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Stomatology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China
| | - Zhiyong Qian
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Donghua Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing, 100850, China
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Juan Xu
- Department of Stomatology, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
34
|
Li L, Lu H, Zhao Y, Luo J, Yang L, Liu W, He Q. Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1241-1251. [PMID: 30813005 DOI: 10.1016/j.msec.2019.01.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Studies have demonstrated that scaffolds, a component of bone tissue engineering, play an indispensable role in bone repair. However, these scaffolds involving ex-vivo cultivated cells seeded have disadvantages in clinical practice, such as limited autologous cells, time-consuming cell expansion procedures, low survival rate and immune-rejection issues. To overcome these disadvantages, recent focus has been placed on the design of functionalized cell-free scaffolds, instead of cell-seeded scaffolds, that can reduplicate the natural self-healing events of bone fractures, such as inflammation, cell recruitment, vascularization, and osteogenic differentiation. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of functionalized cell-free scaffolds for bone repair. In this review, the self-healing processes were highlighted, and approaches for the functionalization were summarized. Also, ongoing efforts and breakthroughs in the field of functionalization for bone defect repair were discussed. Finally, a brief summery and new perspectives for functionalization strategies were presented to provide guidelines for further efforts in the design of bioinspired cell-free scaffolds.
Collapse
Affiliation(s)
- Li Li
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Orthopedic Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongwei Lu
- Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Yulan Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Jiangming Luo
- Center of Joint Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Qingyi He
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China; Orthopedic Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
35
|
Dong T, Mi R, Wu M, Zhong N, Zhao X, Chen X, Shao Z. The regenerated silk fibroin hydrogel with designed architecture bioprinted by its microhydrogel. J Mater Chem B 2019. [DOI: 10.1039/c9tb00783k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The regenerated silk fibroin microhydrogel with thixotropic property could be bioprinted and then ripened to a tough hydrogel because of the change in “the second network” of the microhydrogel.
Collapse
Affiliation(s)
- Tao Dong
- State Key Laboratory of Molecular Engineering of Polymers
- Laboratory of Advanced Materials and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Ruixin Mi
- State Key Laboratory of Molecular Engineering of Polymers
- Laboratory of Advanced Materials and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers
- Laboratory of Advanced Materials and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Nongping Zhong
- Department of Otorhinolaryngol Head & Neck Surgery
- Huashan Hospital
- Fudan University
- Shanghai
- China
| | - Xia Zhao
- Department of Otorhinolaryngol Head & Neck Surgery
- Huashan Hospital
- Fudan University
- Shanghai
- China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Laboratory of Advanced Materials and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Laboratory of Advanced Materials and Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
36
|
Sornkamnerd S, Okajima MK, Matsumura K, Kaneko T. Micropatterned Cell Orientation of Cyanobacterial Liquid-Crystalline Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44834-44843. [PMID: 30480994 DOI: 10.1021/acsami.8b15825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Control of cell extension direction is crucial for the regeneration of tissues, which are generally composed of oriented molecules. The scaffolds of highly oriented liquid crystalline polymer chains were fabricated by casting cyanobacterial mega-saccharides, sacran, on parallel-aligned micrometer bars of polystyrene (PS). Polarized microscopy revealed that the orientation was in transverse direction to the longitudinal axes of the PS bars. Swelling behavior of the micropatterned hydrogels was dependent on the distance between the PS bars. The mechanical properties of these scaffolds were dependent on the structural orientation; additionally, the Young's moduli in the transverse direction were higher than those in the parallel direction to the major axes of the PS bars. Further, fibroblast L929 cells were cultivated on the oriented scaffolds to be aligned along the orientation axis. L929 cells cultured on these scaffolds exhibited uniaxial elongation.
Collapse
Affiliation(s)
- Saranyoo Sornkamnerd
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology, (VISTEC) , Payupnai , Wang Chan 21210 , Thailand
| | - Maiko K Okajima
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Kazuaki Matsumura
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| | - Tatsuo Kaneko
- Energy and Environment Area, Graduate School of Advanced Science and Technology , Japan Advanced Institute of Science and Technology (JAIST) , 1-1 Asahidai , Nomi , Ishikawa 923-1292 , Japan
| |
Collapse
|
37
|
Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Eng Regen Med 2018; 15:673-697. [PMID: 30603588 PMCID: PMC6250655 DOI: 10.1007/s13770-018-0135-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.
Collapse
Affiliation(s)
- Vincent Irawan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| | - Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
38
|
Cengiz IF, Oliveira JM, Reis RL. Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater Res 2018; 22:26. [PMID: 30275969 PMCID: PMC6158835 DOI: 10.1186/s40824-018-0136-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. MAIN BODY This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. CONCLUSION Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
39
|
Ort C, Dayekh K, Xing M, Mequanint K. Emerging Strategies for Stem Cell Lineage Commitment in Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 2018; 4:3644-3657. [PMID: 33429592 DOI: 10.1021/acsbiomaterials.8b00532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem cells have transformed the fields of tissue engineering and regenerative medicine, and their potential to further advance these fields cannot be overstated. The stem cell niche is a dynamic microenvironment that determines cell fate during development and tissue repair following an injury. Classically, stem cells were studied in isolation of their microenvironment; however, contemporary research has produced a myriad of evidence that shows the importance of multiple aspects of the stem cell niche in regulating their processes. In the context of tissue engineering and regenerative medicine studies, the niche is an artificial environment provided by culture conditions. In vitro culture conditions may involve coculturing with other cell types, developing specific biomaterials, and applying relevant forces to promote the desired lineage commitment. Considerable advance has been made over the past few years toward directed stem cell differentiation; however, the unspecific differentiation of stem cells yielding a mixed population of cells has been a challenge. In this review, we provide a systematic review of the emerging strategies used for lineage commitment within the context of tissue engineering and regenerative medicine. These strategies include scaffold pore-size and pore-shape gradients, stress relaxation, sonic and electromagnetic effects, and magnetic forces. Finally, we provide insights and perspectives into future directions focusing on signaling pathways activated during lineage commitment using external stimuli.
Collapse
Affiliation(s)
| | | | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 66 Chancellors Circle, Winnipeg R3T 2N2, Canada
| | | |
Collapse
|
40
|
Li Q, Zhang B, Kasoju N, Ma J, Yang A, Cui Z, Wang H, Ye H. Differential and Interactive Effects of Substrate Topography and Chemistry on Human Mesenchymal Stem Cell Gene Expression. Int J Mol Sci 2018; 19:E2344. [PMID: 30096912 PMCID: PMC6121573 DOI: 10.3390/ijms19082344] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Variations in substrate chemistry and the micro-structure were shown to have a significant effect on the biology of human mesenchymal stromal cells (hMSCs). This occurs when differences in the surface properties indirectly modulate pathways within numerous signaling networks that control cell fate. To understand how the surface features affect hMSC gene expression, we performed RNA-sequencing analysis of bone marrow-derived hMSCs cultured on tissue culture-treated polystyrene (TCP) and poly(l-lactide) (PLLA) based substrates of differing topography (Fl: flat and Fs: fibrous) and chemistry (Pr: pristine and Am: aminated). Whilst 80% of gene expression remained similar for cells cultured on test substrates, the analysis of differentially expressed genes (DEGs) revealed that surface topography significantly altered gene expression more than surface chemistry. The Fl and Fs topologies introduced opposite directional alternations in gene expression when compared to TCP control. In addition, the effect of chemical treatment interacted with that of topography in a synergistic manner with the Pr samples promoting more DEGs than Am samples in all gene ontology function groups. These findings not only highlight the significance of the culture surface on regulating the overall gene expression profile but also provide novel insights into cell-material interactions that could help further design the next-generation biomaterials to facilitate hMSC applications. At the same time, further studies are required to investigate whether or not the observations noted correlate with subsequent protein expression and functionality of cells.
Collapse
Affiliation(s)
- Qiongfang Li
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
| | - Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
- Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, UK.
| | - Naresh Kasoju
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| | - Jinmin Ma
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, UK.
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| | - Hui Wang
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
- Oxford Suzhou Centre for Advanced Research, Suzhou Industrial Park, 215123 Suzhou, China.
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| |
Collapse
|
41
|
Sornkamnerd S, Okajima MK, Matsumura K, Kaneko T. Surface-Selective Control of Cell Orientation on Cyanobacterial Liquid Crystalline Gels. ACS OMEGA 2018; 3:6554-6559. [PMID: 30023952 PMCID: PMC6045405 DOI: 10.1021/acsomega.7b02027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/27/2018] [Indexed: 05/21/2023]
Abstract
Liquid crystalline hydrogels (LCGs) with layer structures and oriented pores were created using sacran which is a cyanobacterial heteropolysaccharide possessing functional sulfate, carboxylate, and amide groups in common with glycosaminoglycan. The LCG biocompatibility with L929 mouse fibroblasts was confirmed under the appropriate conditions. Enhanced growth and proliferation of L929 cells without exhibiting any toxicity were confirmed. The water contact angle and protein adsorption ability on the LCG were well-controlled by the cross-linking degree. Additionally, fibroblasts were finely oriented on the LCG side face where layer edges made a striped morphology on its surface, whereas the flat top faces of the LCG did not induce any specific cell orientation.
Collapse
Affiliation(s)
- Saranyoo Sornkamnerd
- Graduate School
of Advanced Science
and Technology, Japan Advanced Institute
of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Maiko K. Okajima
- Graduate School
of Advanced Science
and Technology, Japan Advanced Institute
of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kazuaki Matsumura
- Graduate School
of Advanced Science
and Technology, Japan Advanced Institute
of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuo Kaneko
- E-mail: . Phone: +81-761-51-1631. Fax: +81-761-51-1635 (T.K.)
| |
Collapse
|
42
|
Khosravi A, Ghasemi-Mobarakeh L, Mollahosseini H, Ajalloueian F, Masoudi Rad M, Norouzi MR, Sami Jokandan M, Khoddami A, Chronakis IS. Immobilization of silk fibroin on the surface of PCL nanofibrous scaffolds for tissue engineering applications. J Appl Polym Sci 2018. [DOI: 10.1002/app.46684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alireza Khosravi
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Hossein Mollahosseini
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Fatemeh Ajalloueian
- Nano-BioScience Research Group; DTU-Food, Technical University of Denmark, Kemitorvet B202; 2800 Kgs, Lyngby Denmark
| | - Maryam Masoudi Rad
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Mohammad-Reza Norouzi
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Maryam Sami Jokandan
- Nano-BioScience Research Group; DTU-Food, Technical University of Denmark, Kemitorvet B202; 2800 Kgs, Lyngby Denmark
| | - Akbar Khoddami
- Department of Textile Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Ioannis S. Chronakis
- Nano-BioScience Research Group; DTU-Food, Technical University of Denmark, Kemitorvet B202; 2800 Kgs, Lyngby Denmark
| |
Collapse
|
43
|
Jiang S, Li SC, Huang C, Chan BP, Du Y. Physical Properties of Implanted Porous Bioscaffolds Regulate Skin Repair: Focusing on Mechanical and Structural Features. Adv Healthc Mater 2018; 7:e1700894. [PMID: 29334185 DOI: 10.1002/adhm.201700894] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/23/2017] [Indexed: 01/07/2023]
Abstract
Porous bioscaffolds are applied to facilitate skin repair since the early 1990s, but a perfect regeneration outcome has yet to be achieved. Until now, most efforts have focused on modulating the chemical properties of bioscaffolds, while physical properties are traditionally overlooked. Recent advances in mechanobiology and mechanotherapy have highlighted the importance of biomaterials' physical properties in the regulation of cellular behaviors and regenerative processes. In skin repair, the mechanical and structural features of porous bioscaffolds are two major physical properties that determine therapeutic efficacy. Here, first an overview of natural skin repair with an emphasis on the major biophysically sensitive cell types involved in this multistage process is provided, followed by an introduction of the four roles of bioscaffolds as skin implants. Then, how the mechanical and structural features of bioscaffolds influence these four roles is discussed. The mechanical and structural features of porous bioscaffolds should be tailored to balance the acceleration of wound closure and functional improvements of the repaired skin. This study emphasizes that decoupling and precise control of the mechanical and structural features of bioscaffolds are significant aspects that should be considered in future biomaterial optimization, which can build a foundation to ultimately achieve perfect skin regeneration outcomes.
Collapse
Affiliation(s)
- Shumeng Jiang
- Department of Biomedical Engineering School of Medicine Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| | - Sabrina Cloud Li
- Department of Biomedical Engineering School of Medicine Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| | - Chenyu Huang
- Beijing Tsinghua Changgung Hospital Tsinghua University Beijing 102218 China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory Department of Mechanical Engineering The University of Hong Kong Hong Kong Special Administrative Region China
| | - Yanan Du
- Department of Biomedical Engineering School of Medicine Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
44
|
Wang L, Xu ME, Luo L, Zhou Y, Si P. Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. Sci Rep 2018; 8:2802. [PMID: 29434327 PMCID: PMC5809410 DOI: 10.1038/s41598-018-21274-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
For three-dimensional bio-printed cell-laden hydrogel tissue constructs, the well-designed internal porous geometry is tailored to obtain the desired structural and cellular properties. However, significant differences often exist between the designed and as-printed scaffolds because of the inherent characteristics of hydrogels and cells. In this study, an iterative feedback bio-printing (IFBP) approach based on optical coherence tomography (OCT) for the fabrication of cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability was proposed. A custom-made swept-source OCT (SS-OCT) system was applied to characterize the printed scaffolds quantitatively. Based on the obtained empirical linear formula from the first experimental feedback loop, we defined the most appropriate design constraints and optimized the printing process to improve the geometrical fidelity. The effectiveness of IFBP was verified from the second run using gelatin/alginate hydrogel scaffolds laden with C3A cells. The mismatch of the morphological parameters greatly decreased from 40% to within 7%, which significantly optimized the cell viability, proliferation, and morphology, as well as the representative expression of hepatocyte markers, including CYP3A4 and albumin, of the printed cell-laden hydrogel scaffolds. The demonstrated protocol paves the way for the mass fabrication of cell-laden hydrogel scaffolds, engineered tissues, and scaled-up applications of the 3D bio-printing technique.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Ming-En Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Li Luo
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yongyong Zhou
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Peijian Si
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
45
|
Liu Y, Xu J, Zhou Y, Ye Z, Tan WS. Layer-by-layer assembled polyelectrolytes on honeycomb-like porous poly(ε-caprolactone) films modulate the spatial distribution of mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:579-588. [PMID: 28576024 DOI: 10.1016/j.msec.2017.04.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 11/08/2022]
|
46
|
Zhang J, Neoh KG, Kang ET. Electrical stimulation of adipose-derived mesenchymal stem cells and endothelial cells co-cultured in a conductive scaffold for potential orthopaedic applications. J Tissue Eng Regen Med 2017; 12:878-889. [PMID: 28482125 DOI: 10.1002/term.2441] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 12/24/2022]
Abstract
Electrical stimulation (ES) has emerged as a useful tool to regulate cell behaviour, but the effect of ES on mesenchymal stem cell (MSC)/vasculogenic cell co-culture has not been investigated. Herein, human adipose-derived MSCs (AD-MSCs) and umbilical vein endothelial cells (HUVECs) were co-cultured in an electrically conductive polypyrrole/chitosan scaffold. Compared with AD-MSC monoculture, calcium deposition in the co-culture without and with ES (200 μA for 4 h/day) was 139% and 346% higher, respectively, after 7 days. As the application of ES to AD-MSC monoculture only increased calcium deposition by 56% compared with that without ES after 7 days, these results indicate that ES and co-culture with HUVECs have synergistic effects on AD-MSCs' osteogenic differentiation. ES application also significantly enhanced CD31 expression of HUVECs. In HUVEC monoculture, application of ES increased CD31 expression by 224%, whereas the corresponding increase in AD-MSC/HUVEC co-culture with ES application was 62%. The gene expression results indicate that ES enhanced the cellular functions in AD-MSC and HUVEC monoculture via autocrine bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF), respectively. In co-culture, crosstalk between AD-MSCs and HUVECs due to paracrine BMP-2 and VEGF enhanced the cellular functions compared with the respective monoculture. With application of ES to the AD-MSC/HUVEC co-culture, autocrine signalling was enhanced, resulting in further promotion of cellular functions. These findings illustrate that co-culturing AD-MSC/HUVEC in a conductive scaffold with ES offers potential benefits for bone defect therapy.
Collapse
Affiliation(s)
- Jieyu Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore
| | - Koon Gee Neoh
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore
| | - En-Tang Kang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore
| |
Collapse
|
47
|
Gómez-Lizárraga KK, Flores-Morales C, Del Prado-Audelo ML, Álvarez-Pérez MA, Piña-Barba MC, Escobedo C. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 28629025 DOI: 10.1016/j.msec.2017.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
One of the critical challenges that scaffolding faces in the organ and tissue regeneration field lies in mimicking the structure, and the chemical and biological properties of natural tissue. A high-level control over the architecture, mechanical properties and composition of the materials in contact with cells is essential to overcome such challenge. Therefore, definition of the method, materials and parameters for the production of scaffolds during the fabrication stage is critical. With the recent emergence of rapid prototyping (RP), it is now possible to create three-dimensional (3D) scaffolds with the essential characteristics for the proliferation and regeneration of tissues, such as porosity, mechanical strength, pore size and pore interconnectivity, and biocompatibility. In this study, we employed 3D bioplotting, a RP technology, to fabricate scaffolds made from (i) pure polycaprolactone (PCL) and (ii) a composite based on PCL and ceramic micro-powder. The ceramics used for the composite were bovine bone filling Nukbone® (NKB), and hydroxyapatite (HA) with 5%, 10% or 20% wt. CONTENT The scaffolds were fabricated in a cellular lattice structure (i.e. meshing mode) using a 0/90° lay down pattern with a continuous contour filament in order to achieve interconnected porous reticular structures. We varied the temperature, as well as injection speed and pressure during the bioplotting process to achieve scaffolds with pore size ranging between 200 and 400μm and adequate mechanical stability. The resulting scaffolds had an average pore size of 323μm and an average porosity of 32%. Characterization through ATR-FTIR revealed the presence of the characteristic bands of hydroxyapatite in the PCL matrix, and presented an increase of the intensity of the phosphate and carbonyl bands as the ceramic content increased. The bioplotted 3D scaffolds have a Young's modulus (E) in the range between 0.121 and 0.171GPa, which is compatible with the modulus of natural bone. PCL/NKB scaffolds, particularly 10NKBP (10% NKB wt.) exhibited the highest proliferation optical density, demonstrating an evident osteoconductive effect when cultured in Dulbecco's Modified Eagle Medium (DMEM). Scanning electron microscopy (SEM) confirmed osteoblast anchorage to all composite scaffolds, but a low adhesion to the all-PCL scaffold, as well as cell proliferation. The results from this study demonstrate the potential of PCL/NKB 3D bioplotted scaffolds as viable platforms to enable osseous tissue formation, which can be used in several tissue engineering applications, including improvement of bone tissue regeneration.
Collapse
Affiliation(s)
- K K Gómez-Lizárraga
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - C Flores-Morales
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - M L Del Prado-Audelo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - M A Álvarez-Pérez
- Laboratorio de Bioingeniería de Tejidos, Facultad de Odontología, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - M C Piña-Barba
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico.
| | - C Escobedo
- Department of Chemical Engineering, Queen's University, 19 Division St., Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
48
|
Abstract
Bone diseases/injuries have been driving an urgent quest for bone substitutes for bone regeneration. Nanoscaled materials with bone-mimicking characteristics may create suitable microenvironments to guide effective bone regeneration. In this review, the natural hierarchical architecture of bone and its regeneration mechanisms are elucidated. Recent progress in the development of nanomaterials which can promote bone regeneration through bone-healing mimicry (e.g., compositional, nanocrystal formation, structural, and growth factor-related mimicking) is summarized. The nanoeffects of nanomaterials on the regulation of bone-related biological functions are highlighted. How to prepare nanomaterials with combinative bone-biomimicry features according to the bone healing process is prospected in order to achieve rapid bone regeneration in situ.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | | |
Collapse
|
49
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
50
|
Zhang Z, Cheng X, Yao Y, Luo J, Tang Q, Wu H, Lin S, Han C, Wei Q, Chen L. Electrophoretic deposition of chitosan/gelatin coatings with controlled porous surface topography to enhance initial osteoblast adhesive responses. J Mater Chem B 2016; 4:7584-7595. [PMID: 32263815 DOI: 10.1039/c6tb02122k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electrophoretically deposited (EPD) coatings have often been employed recently for the addition of different new chemical compositions to classic chitosan coatings to improve the biocompatibility and therapeutic potential of coated implants. However, little attention has been paid to enhance the cell response to EPD coatings via integrating the effects of chemical components and surface topography. Here, we fabricated EPD chitosan/gelatin (CS/G) coatings with controlled porous surface topography by controlling bubble generation in the EPD process via changing the gelatin content in solution from 0, 0.01, 0.1, and 1 to 10 mg ml-1. The pure chitosan coating surface was characterized by homogeneous large pores of 500 μm. After 0.01 mg ml-1 gelatin was added, 180 μm small pores appeared on the walls of large pores. As the gelatin content increased to 0.1 mg ml-1, a number of small pores increased noticeably. When the gelatin content reached 1 mg ml-1, large pores disappeared, and the coating displayed homogeneous small pores. 10 mg ml-1 gelatin concentration led to coatings consisting of small pores with not integral and continuous structures. The initial osteoblastic responses, including cell adherence progress, spreading area, proliferation rate, and focal adhesion-related gene expression, gradually improved from 0 to 0.01, 0.1, and 1 mg ml-1 gelatin content, but decreased from 1 to 10 mg ml-1. All these results indicated that the initial cell responses to coatings reached a peak when it was 1 mg ml-1 gelatin and they had homogeneous small pores, which might contribute to the synergistic effects of the porous surface structure and components. This work would be beneficial for expanding the potential application of EPD coatings.
Collapse
Affiliation(s)
- Zhen Zhang
- Dept. Stomatol., Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|