1
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Oxidation-mediated scaffold engineering of hyaluronic acid-based microcarriers enhances corneal stromal regeneration. Carbohydr Polym 2022; 292:119668. [DOI: 10.1016/j.carbpol.2022.119668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
3
|
Dong Q, Wu D, Li M, Dong W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022; 76:101782. [PMID: 35339801 DOI: 10.1016/j.tice.2022.101782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Corneal-related diseases and injuries are the leading causes of vision loss, estimated to affect over 10 million people worldwide. Currently, cadaveric corneal grafts are considered the gold standard of treatment to restore cornea-related vision. However, this treatment modality faces different challenges such as donor shortage and graft failure. Therefore, the need for alternative solutions continues to grow. Tissue engineering has dramatically progressed to produce artificial cornea implants in order to repair, regenerate, or replace the damaged cornea. In this regard, a variety of polysaccharides such as cellulose, chitosan, alginate, agarose, and hyaluronic acid have been widely explored as scaffolding biomaterials for the production of tissue-engineered cornea. These polymers are known for their excellent biocompatibility, versatile properties, and processability. Recent progress and future perspectives of polysaccharide-based biomaterials in cornea tissue engineering is reviewed here.
Collapse
Affiliation(s)
- Qiwei Dong
- School of medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dingkun Wu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China, 116024
| | - Moqiu Li
- Center for Cancer Prevention Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Dong
- School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Characterization of Taurine/Silk Fibroin Blend Film for Application as a Carrier for Corneal Endothelial Cell Transplantation. Macromol Res 2022. [DOI: 10.1007/s13233-022-0033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Sang S, Yan Y, Shen Z, Cao Y, Duan Q, He M, Zhang Q. Photo-crosslinked hydrogels for tissue engineering of corneal epithelium. Exp Eye Res 2022; 218:109027. [PMID: 35276182 DOI: 10.1016/j.exer.2022.109027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/04/2022]
Abstract
The vast majority of patients with corneal blindness cannot recover their vision due to the serious shortage of donor cornea. However, the technology to construct a feasible corneal substitute is a promising treatment method for corneal blindness. In this paper, methacrylated gelatin (GelMA)-methacrylated hyaluronic acid (HAMA) double network (GHDN) hydrogels were prepared by modifying gelatin and hyaluronic acid with methacrylate anhydride (MA). GHDN hydrogel was compared with GelMA single network and HAMA single network hydrogels through characterization experiments of mechanical properties, optical properties, hydrophilicity and in-situ degradation in vitro. At the same time, the biocompatibility of hydrogel was tested by inoculating rabbit corneal epithelial cells (CEpCs) epidermal cells on hydrogels using CCK-8 test, live/dead staining, immunofluorescence staining and qRT-PCR. It was found that the GHDN hydrogel has optical transparency in the visible region, and its mechanical properties are better than those of GelMA and HAMA hydrogels, and its hydrophilicity is similar to that of normal human corneas. The results of in vitro hydrogel culture of CEpCs showed that the proliferation of CEpCs on GHDN hydrogel was two times higher than that of HAMA hydrogel, and the expression of specific marker Cytokeratin 3 (CK3) and Cytokeratin 12 (CK12) could be better maintained on GHDN hydrogel. All the experimental results proved that GHDN hydrogel has good physical properties and biocompatibility and is a potential candidate for corneal tissue engineering scaffolds.
Collapse
Affiliation(s)
- Shengbo Sang
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yayun Yan
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhizhong Shen
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanyan Cao
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China; College of Information Science and Engineering, Hebei North University, Zhangjiakou, 075000, China
| | - Qianqian Duan
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Min He
- Department of Ophthalmology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Qiang Zhang
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
6
|
Jameson JF, Pacheco MO, Nguyen HH, Phelps EA, Stoppel WL. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering (Basel) 2021; 8:161. [PMID: 34821727 PMCID: PMC8615221 DOI: 10.3390/bioengineering8110161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Given the incidence of corneal dysfunctions and diseases worldwide and the limited availability of healthy, human donors, investigators are working to generate engineered cellular and acellular therapeutic approaches as alternatives to corneal transplants from human cadavers. These engineered strategies aim to address existing complications with human corneal transplants, including graft rejection, infection, and complications resulting from surgical methodologies. The main goals of these research endeavors are to (1) determine ideal mechanical properties, (2) devise methodologies to improve the efficacy of engineered corneal grafts and cell-based therapies, and (3) optimize transplantation of engineered tissue structures in the eye. Thus, recent innovations have sought to address these challenges through both in vitro and in vivo studies. This review covers recent work aimed at evaluating engineered materials, potential therapeutic cells, and the resulting cell-material interactions that lead to optimal corneal graft properties. Furthermore, we discuss promising strategies in corneal tissue engineering techniques and in vivo studies in animal models.
Collapse
Affiliation(s)
- Julie F. Jameson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Marisa O. Pacheco
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Henry H. Nguyen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Whitney L. Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| |
Collapse
|
7
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
8
|
Significance of Crosslinking Approaches in the Development of Next Generation Hydrogels for Corneal Tissue Engineering. Pharmaceutics 2021; 13:pharmaceutics13030319. [PMID: 33671011 PMCID: PMC7997321 DOI: 10.3390/pharmaceutics13030319] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Medical conditions such as trachoma, keratoconus and Fuchs endothelial dystrophy can damage the cornea, leading to visual deterioration and blindness and necessitating a cornea transplant. Due to the shortage of donor corneas, hydrogels have been investigated as potential corneal replacements. A key factor that influences the physical and biochemical properties of these hydrogels is how they are crosslinked. In this paper, an overview is provided of different crosslinking techniques and crosslinking chemical additives that have been applied to hydrogels for the purposes of corneal tissue engineering, drug delivery or corneal repair. Factors that influence the success of a crosslinker are considered that include material composition, dosage, fabrication method, immunogenicity and toxicity. Different crosslinking techniques that have been used to develop injectable hydrogels for corneal regeneration are summarized. The limitations and future prospects of crosslinking strategies for use in corneal tissue engineering are discussed. It is demonstrated that the choice of crosslinking technique has a significant influence on the biocompatibility, mechanical properties and chemical structure of hydrogels that may be suitable for corneal tissue engineering and regenerative applications.
Collapse
|
9
|
Yazdani M, Shahdadfar A, Jackson CJ, Utheim TP. A Hyaluronan Hydrogel Scaffold for Culture of Human Oral Mucosal Epithelial Cells in Limbal Stem-Cell Therapy. Bioengineering (Basel) 2019; 6:E97. [PMID: 31652804 PMCID: PMC6955856 DOI: 10.3390/bioengineering6040097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix, plays a key role in cell proliferation, growth, survival, polarization and differentiation. We investigated the optimization of a HA hydrogel scaffold for culture of human oral mucosal epithelial cells (OMECs) for potential application in limbal stem cell therapy. The effect of the optimized scaffold on OMEC cell sheet morphology, cell metabolic activity and expression of genes associated with stemness, adherence and cell damage was studied. The results indicate that HA hydrogels crosslinked with polyethylene glycol diacrylate (PEGDA) failed to support OMEC attachment and growth. However, HA hydrogel scaffolds dried for three days and coated with 1 mg/mL collagen IV produced a full OMEC sheet. Cell morphology was comparable to control after three weeks culture, maintaining 76% metabolic activity. Of apoptosis-related genes, the pro-apoptotic markers CASP3 and BAX2 were upregulated and downregulated, respectively, compared to control whereas the anti-apoptotic marker BCL2 was downregulated. The expression level of stemness genes ΔNp63α and ABCG2 was significantly higher than control. Genes associated with improved scar-less wound healing (integrin-V) and protection of the ocular surface (cadherin-1) had ~3-fold increased expression. These data suggest that our optimized HA-hydrogel scaffold could enhance culture of OMEC cell sheets for use in ocular reconstruction.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway.
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Department of Ophthalmology, Stavanger University Hospital, 4011 Stavanger, Norway.
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4604 Arendal, Norway.
| |
Collapse
|
10
|
Yazdani M, Shahdadfar A, Jackson CJ, Utheim TP. Hyaluronan-Based Hydrogel Scaffolds for Limbal Stem Cell Transplantation: A Review. Cells 2019; 8:E245. [PMID: 30875861 PMCID: PMC6468750 DOI: 10.3390/cells8030245] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan (HA), also termed hyaluronic acid or hyaluronate, is a major component of the extracellular matrix. This non-sulfated glycosaminoglycan plays a key role in cell proliferation, growth, survival, polarization, and differentiation. The diverse biological roles of HA are linked to the combination of HA's physicochemical properties and HA-binding proteins. These unique characteristics have encouraged the application of HA-based hydrogel scaffolds for stem cell-based therapy, a successful method in the treatment of limbal stem cell deficiency (LSCD). This condition occurs following direct damage to limbal stem cells and/or changes in the limbal stem cell niche microenvironment due to intrinsic and extrinsic insults. This paper reviews the physical properties, synthesis, and degradation of HA. In addition, the interaction of HA with other extracellular matrix (ECM) components and receptor proteins are discussed. Finally, studies employing HA-based hydrogel scaffolds in the treatment of LSCD are reviewed.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0318 Oslo, Norway.
- Department of Maxillofacial Surgery, Oslo University Hospital, 0450 Oslo, Norway.
- Department of Ophthalmology, Vestre Viken Hospital Trust, 3019 Drammen, Norway.
- Department of Ophthalmology, Stavanger University Hospital, 4011 Stavanger, Norway.
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway.
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4604 Arendal, Norway.
- National Centre for Optics, Vision and Eye Care, Faculty of Health Sciences, University of South Eastern Norway, 3603 Kongsberg, Norway.
| |
Collapse
|
11
|
Effect of Cross-Linking Density on the Structures and Properties of Carbodiimide-Treated Gelatin Matrices as Limbal Stem Cell Niches. Int J Mol Sci 2018; 19:ijms19113294. [PMID: 30360558 PMCID: PMC6274912 DOI: 10.3390/ijms19113294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Given that human amniotic membrane is a valuable biological material not readily available for corneal epithelial tissue engineering, gelatin is considered as a potential alternative to construct a cellular microenvironment. This study investigates, for the first time, the influence of cross-linking density of carbodiimide-treated gelatin matrices on the structures and properties of artificial limbal stem cell niches. Our results showed that an increase in the carbodiimide concentration from 1.5 to 15 mM leads to an upward trend in the structural and suture strength of biopolymers. Furthermore, increasing number of cross-linking bridges capable of linking protein molecules together may reduce their crystallinity. For the samples treated with 50 mM of cross-linker (i.e., the presence of excess N-substituted carbodiimide), abundant N-acylurea was detected, which was detrimental to the in vitro and in vivo ocular biocompatibility of gelatin matrices. Surface roughness and stiffness of biopolymer substrates were found to be positively correlated with carbodiimide-induced cross-link formation. Significant increases of integrin β1 expression, metabolic activity, and ABCG2 expression were noted as the cross-linker concentration increased, suggesting that the bulk crystalline structure and surface roughness/stiffness of niche attributed to the number of cross-linking bridges may have profound effects on a variety of limbal epithelial cell behaviors, including adhesion, proliferation, and stemness maintenance. In summary, taking the advantages of carbodiimide cross-linking-mediated development of gelatin matrices, new niches with tunable cross-linking densities can provide a significant boost to maintain the limbal stem cells during ex vivo expansion.
Collapse
|
12
|
Chou SF, Luo LJ, Lai JY, Ma DHK. Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1145-1155. [PMID: 27987671 DOI: 10.1016/j.msec.2016.11.105] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 11/18/2016] [Accepted: 11/24/2016] [Indexed: 02/04/2023]
Abstract
Due to their ability to mimic the structure of extracellular matrix, electrospun gelatin nanofibers are promising cell scaffolding materials for tissue engineering applications. However, the hydrophilic gelatin molecules usually need stabilization before use in aqueous physiological environment. Considering that biomaterials cross-linked via film immersion technique may have a more homogeneous cross-linked structure than vapor phase cross-linking, this work aims to investigate the chemical modification of electrospun gelatin nanofibrous membranes by liquid phase carbodiimide in the presence of ethanol/water co-solvents with varying ethanol concentrations ranging from 80 to 99.5vol%. The results of characterization showed that increasing water content in the binary reaction solvent system increases the extent of cross-linking of gelatin nanofibers, but simultaneously promotes the effect of biopolymer swelling and distortion in fiber mat structure. As compared to non-cross-linked counterparts, carbodiimide treated gelatin nanofibrous mats exhibited better thermal and biological stability where the shrinkage temperature and resistance to enzymatic degradation varied in response to ethanol/water solvent composition-mediated generation of cross-links. Irrespective of their cross-linking density, all studied membrane samples did not induce any responses in ocular epithelial cell cultures derived from cornea, lens, and retina. Unlike many other cross-linking agents and/or methods (e.g., excessive vapor phase cross-linking) that may pose a risk of toxicity, our study demonstrated that these nanofibrous materials are well tolerated by anterior segment tissues. These findings also indicate the safety of using ethanol/water co-solvents for chemical cross-linking of gelatin to engineer nanofibrous materials with negligible biological effects. In summary, the present results suggest the importance of solvent-mediated carbodiimide cross-linking in modulating structure-property relationship without compromising in vitro and in vivo biocompatibility of electrospun gelatin nanofibers for future ophthalmic applications.
Collapse
Affiliation(s)
- Shih-Feng Chou
- Department of Mechanical Engineering, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Li-Jyuan Luo
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC; Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC; Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC.
| | - David Hui-Kang Ma
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| |
Collapse
|