1
|
Spaeth K, Nawaz Q, Schilling T, Goetz-Neunhoeffer F, Detsch R, Boccaccini AR, Hurle K. New Insights Into Application Relevant Properties of Cu 2+-Doped Brushite Cements. J Biomed Mater Res B Appl Biomater 2024; 112:e35479. [PMID: 39225415 DOI: 10.1002/jbm.b.35479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Doping of brushite cements with metal ions can entail many positive effects on biological and physicochemical properties. Cu2+ ions are known to exhibit antibacterial properties and can additionally have different positive effects on cells as trace elements, whereas high Cu2+ concentrations are cytotoxic. For therapeutical applications of bone cement, a combination of good biocompatibility and sufficient mechanical properties is required. Therefore, the aim of this study was to investigate different physicochemical and biological aspects, relevant for application, of a brushite cement with Cu2+-doped β-tricalcium phosphate, monocalcium phosphate monohydrate and phytic acid as setting retarder. Additionally, the ion release was compared with a cement with citric acid as setting retarder. The investigated cements showed good injectability coefficients, as well as compressive strength values sufficient for application. Furthermore, no antibacterial effects were detected irrespective of the Cu2+ concentration or the bacterial strain. The cell experiments with eluate samples showed that the viability of MC3T3-E1 cells tended to decrease with increasing Cu2+ concentration in the cement. It is suggested that these biological responses are caused by the difference in the Cu2+ release from the hardened cement depending on the solvent medium. Furthermore, the cements showed a steady release of Cu2+ ions to a lesser extent in comparison with a cement with citric acid as setting retarder, where a burst release of Cu2+ was observed. In conclusion, despite the anticipated antibacterial effect of Cu2+-doped cements was lacking and mammalian cell viability was slightly affected, Cu2+-concentrations maintained the physicochemical properties as well as the compressive strength of cements and the slow ion release from cements produced with phytic acid is considered advantageous compared to citric acid-based formulations.
Collapse
Affiliation(s)
- Karla Spaeth
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Qaisar Nawaz
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tatjana Schilling
- Department for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, Julius-Maximilians-Universität Würzburg (JMU), Würzburg, Germany
| | | | - Rainer Detsch
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aldo R Boccaccini
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Noukrati H, Hamdan Y, Marsan O, El Fatimy R, Cazalbou S, Rey C, Barroug A, Combes C. Sodium fusidate loaded apatitic calcium phosphates: Adsorption behavior, release kinetics, antibacterial efficacy, and cytotoxicity assessment. Int J Pharm 2024; 660:124331. [PMID: 38866083 DOI: 10.1016/j.ijpharm.2024.124331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
The present work reports the adsorption, release, antibacterial properties, and in vitro cytotoxicity of sodium fusidate (SF) associated with a carbonated calcium phosphate bone cement. The adsorption study of SF on cement powder compared to stoichiometric hydroxyapatite and nanocrystalline carbonated apatite was investigated to understand the interaction between this antibiotic and the calcium phosphate phases involved in the cement formulation and setting reaction. The adsorption data revealed a fast kinetic process. However, the evolution of the amount of adsorbed SF was well described by a Freundlich-type isotherm characterized by a low adsorption capacity of the materials toward the SF molecule. The in vitro release results indicated a prolonged and controlled SF release for up to 34 days. The SF amounts eluted daily were at a therapeutic level (0.5-2 mg/L) and close to the antibiotic minimum inhibitory concentration (0.1-0.9 mg/L). Furthermore, the release data fitting and modeling suggested that the drug release occurred mainly by a diffusion mechanism. The antibacterial activity showed the effectiveness of SF released from the formulated cements against Staphylococcus aureus. Furthermore, the biological in vitro study demonstrated that the tested cements didn't show any cytotoxicity towards human peripheral blood mononuclear cells and did not significantly induce inflammation markers like IL-8.
Collapse
Affiliation(s)
- Hassan Noukrati
- Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco; CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France; Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.
| | - Yousra Hamdan
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Olivier Marsan
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France
| | - Rachid El Fatimy
- Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Sophie Cazalbou
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christian Rey
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France
| | - Allal Barroug
- Cadi Ayyad University, Faculty of Sciences Semlalia (SCIMATOP), Bd Prince My Abdellah, BP 2390, 40000 Marrakech, Morocco; Institute of Biological Sciences, ISSB, Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France
| |
Collapse
|
3
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
4
|
Nandi SK, Roy M, Bandyopadhyay A, Bose S. In vivo biocompatibility of SrO and MgO doped brushite cements. J Biomed Mater Res B Appl Biomater 2023; 111:599-609. [PMID: 36254886 PMCID: PMC9852027 DOI: 10.1002/jbm.b.35177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/22/2023]
Abstract
The addition of dopants in biomaterials has emerged as a critical regulator of bone formation and regeneration due to their imminent role in the biological process. The present work evaluated the role of strontium (Sr) and magnesium (Mg) dopants in brushite cement (BrC) on in vivo bone healing performance in a rabbit model. Pure, 1 wt% SrO (Sr-BrC), 1 wt% MgO (Mg-BrC), and a binary composition of 1.0 wt% SrO + 1.0 wt% MgO (Sr + Mg-BrC) BrCs were implanted into critical-sized tibial defects in rabbits for up to 4 months. The in vivo bone healing of three doped and pure BrC samples was examined and compared using sequential radiological examination, histological evaluations, and fluorochrome labeling studies. The results indicated excellent osseous tissue formation for Sr-BrC and Sr + Mg-BrC and moderate bone regeneration for Mg-BrC compared to pure BrC. Our findings indicated that adding small amounts of SrO, MgO, and binary dopants to the BrC can significantly influence new bone formation for bone tissue engineering.
Collapse
Affiliation(s)
- Samit K. Nandi
- Department of Veterinary Surgery and RadiologyWest Bengal University of Animal and Fishery SciencesKolkataIndia
| | - Mangal Roy
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials EngineeringWashington State UniversityPullmanWashingtonUSA
- Present address:
Metallurgical and Materials EngineeringIIT‐KharagpurKharagpurIndia
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials EngineeringWashington State UniversityPullmanWashingtonUSA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials EngineeringWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
5
|
Takabait F, Martínez-Martínez S, Mahtout L, Graba Z, Sánchez-Soto PJ, Pérez-Villarejo L. Effect of L-Glutamic Acid on the Composition and Morphology of Nanostructured Calcium Phosphate as Biomaterial. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1262. [PMID: 36770268 PMCID: PMC9920287 DOI: 10.3390/ma16031262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Calcium phosphate (CaP) with several chemical compositions and morphologies was prepared by precipitation using aqueous solutions of L-Glutamic acid (H2G) and calcium hydroxide, both mixed together with an aqueous solution (0.15 M) of phosphoric acid. Plate-shaped dicalcium phosphate dihydrate (brushite) particles were obtained and identified at a lower concentration of the solution of the reactants. The Ca/P ratio deduced by EDS was ~1, as expected. The nanoscale dimension of carbonate apatite and amorphous calcium phosphate, with variable Ca/P ratios, were revealed by X-ray diffraction (XRD) and scanning electron microscopy and energy dispersive X-ray spectroscopy analysis (SEM-EDS). They were characterized in medium and high concentrations of calcium hydroxide (0.15 M and 0.20 M). The equilibria involved in all the reactions in aqueous solution were determined. The thermodynamic calculations showed a decrease in the amount of chelate complexes with an increase in pH, being the opposite of [CaPO4-] and [CaHG+]. This fluctuation showed an evident influence on the morphology and polymorphism of CaP particles obtained under the present experimental conditions, with potential use as a biomaterial.
Collapse
Affiliation(s)
- Fatah Takabait
- Laboratoire de Technologie des Matériaux et de Génie des Procédés (LTMGP), Faculté des Sciences Exactes, Université A. Mira-Béjaïa, Terga Ouzemmour, Béjaïa 06000, Algeria
| | - Sergio Martínez-Martínez
- Department of Chemical, Environmental and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico y Tecnológico, Cinturón Sur s/n, 23700 Linares, Spain
- Institute of Materials Science of Sevilla (ICMS), Joint Center of the Spanish National Research Council (CSIC), University of Sevilla, Isla de la Cartuja, 41092 Seville, Spain
| | - Laila Mahtout
- Laboratoire de Technologie des Matériaux et de Génie des Procédés (LTMGP), Faculté des Sciences Exactes, Université A. Mira-Béjaïa, Terga Ouzemmour, Béjaïa 06000, Algeria
| | - Zahra Graba
- Laboratoire de Technologie des Matériaux et de Génie des Procédés (LTMGP), Faculté des Sciences Exactes, Université A. Mira-Béjaïa, Terga Ouzemmour, Béjaïa 06000, Algeria
| | - Pedro J. Sánchez-Soto
- Institute of Materials Science of Sevilla (ICMS), Joint Center of the Spanish National Research Council (CSIC), University of Sevilla, Isla de la Cartuja, 41092 Seville, Spain
| | - Luis Pérez-Villarejo
- Department of Chemical, Environmental and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico y Tecnológico, Cinturón Sur s/n, 23700 Linares, Spain
| |
Collapse
|
6
|
Krokhicheva PA, Gol’dberg MA, Khairutdinova DR, Antonova OS, Akhmedova SA, Kirsanova VA, Sviridova IK, Sergeeva NS, Leonov AV, Baikin AS, Smirnov IV, Barinov SM, Komlev VS. Bone Cements Based on Struvite: The Effect of Vancomycin Loading and Assessment of Biocompatibility and Osteoconductive Potentials In Vivo. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621080118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Hurle K, Oliveira J, Reis R, Pina S, Goetz-Neunhoeffer F. Ion-doped Brushite Cements for Bone Regeneration. Acta Biomater 2021; 123:51-71. [PMID: 33454382 DOI: 10.1016/j.actbio.2021.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Decades of research in orthopaedics has culminated in the quest for formidable yet resorbable biomaterials using bioactive materials. Brushite cements most salient features embrace high biocompatibility, bioresorbability, osteoconductivity, self-setting characteristics, handling, and injectability properties. Such type of materials is also effectively applied as drug delivery systems. However, brushite cements possess limited mechanical strength and fast setting times. By means of incorporating bioactive ions, which are incredibly promising in directing cell fate when incorporated within biomaterials, it can yield biomaterials with superior mechanical properties. Therefore, it is a key to develop fine-tuned regenerative medicine therapeutics. A comprehensive overview of the current accomplishments of ion-doped brushite cements for bone tissue repair and regeneration is provided herein. The role of ionic substitution on the cements physicochemical properties, such as structural, setting time, hydration products, injectability, mechanical behaviour and ion release is discussed. Cell-material interactions, osteogenesis, angiogenesis, and antibacterial activity of the ion-doped cements, as well as its potential use as drug delivery carriers are also presented. STATEMENT OF SIGNIFICANCE: Ion-doped brushite cements have unbolted a new era in orthopaedics with high clinical interest to restore bone defects and facilitate the healing process, owing its outstanding bioresorbability and osteoconductive/osteoinductive features. Ion incorporation expands their application by increasing the osteogenic and neovascularization potential of the materials, as well as their mechanical performance. Recent accomplishments of brushite cements incorporating bioactive ions are overviewed. Focus was placed on the role of ions on the physicochemical and biological properties of the biomaterials, namely their structure, setting time, injectability and handling, mechanical behaviour, ion release and in vivo osteogenesis, angiogenesis and vascularization. Antibacterial activity of the cements and their potential use for delivery of drugs are also highlighted herein.
Collapse
|
8
|
|
9
|
Li X, Li G, Zhang K, Pei Z, Zhao S, Li J. Cu-loaded Brushite bone cements with good antibacterial activity and operability. J Biomed Mater Res B Appl Biomater 2020; 109:877-889. [PMID: 33112029 DOI: 10.1002/jbm.b.34752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 01/29/2023]
Abstract
Bone defect-related surgical procedures are traumatic processes carrying potential inflammation and infection risks in the clinic, which are associated with prolonged antibiotic therapy that promotes bacterial antibiotic-resistance. In the present study, Cu-loaded brushite bone cements were designed, and the properties of the bone cements were evaluated. The setting time of the cement was prolonged from 12 to 50 min as the copper content increased. All cements were anti-washout, and the injectable coefficient of the cements was approximately 88%. Scanning electron microscopy results revealed that the crystal grains grew larger and thicker as the copper content in the cement increased, and brushite was determined to be the dominant crystalline phase for all the cements. However, a small amount of newly formed calcium copper phosphate was observed in the cement. Simultaneously, band shifts were observed in the Fourier transform infrared spectroscopy results at a Cu content of 5%. Moreover, the addition of Cu improved the compressive strength of brushite cements, and all cements were degradable. Furthermore, the Cu-loaded brushite bone cements performed well in inhibiting the growth and proliferation of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and the diameter of the inhibition zone increased with increasing copper content. The study revealed that the Cu-loaded brushite bone cements possessed good cellular affinity to mouse bone marrow stem cells when a lower dose of copper was added in vitro. These results support the great potential of injectable antibacterial brushite bone cement specifically for bone tissue defect-related repair and regeneration.
Collapse
Affiliation(s)
- Xiaoyu Li
- Central laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Guangda Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Kaili Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhengjun Pei
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Santuan Zhao
- College of Material Science and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
10
|
Silicon-calcium phosphate ceramics and silicon-calcium phosphate cements: Substrates to customize the release of antibiotics according to the idiosyncrasies of the patient. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110173. [PMID: 31753390 DOI: 10.1016/j.msec.2019.110173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
Abstract
Bone substitutes based on calcium phosphates can be classified in two major groups: ceramics and cements. Both are biomaterials with excellent biocompatibility that have been studied as local delivery systems for drugs. This study aims to evaluate drug-release kinetics in silicon beta-tricalcium phosphate ceramics (Si-β-TCP) and in silicon calcium phosphate cements (Si-CPCs). We want to investigate if the differences in composition and in structure of the Si-β-TCP and the Si-CPC may influence for drug loading and in its release kinetics from the biomaterial. The results obtained indicate that all drug-loaded materials were efficient to tailor drug release kinetics and inhibited the growth of Staphylococcus aureus. The cements prepared with high concentrations of silicon (80% Si-CPC) present zero-order release kinetics, independent of the drug concentration loaded. Si-β-TCP and Si-CPC offer a simple technology that could serve to personalize the delivery of bioactive molecules according to each patient's needs in the treatment of bone conditions, not only limited to prophylaxis, but also for the treatment of bone infection.
Collapse
|
11
|
Dabiri SMH, Lagazzo A, Aliakbarian B, Mehrjoo M, Finocchio E, Pastorino L. Fabrication of alginate modified brushite cement impregnated with antibiotic: Mechanical, thermal, and biological characterizations. J Biomed Mater Res A 2019; 107:2063-2075. [PMID: 31081994 DOI: 10.1002/jbm.a.36719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/07/2022]
Abstract
Treatment of postsurgical infections, associated with orthopedic surgeries, has been a major concern for orthopedics. Several strategies including systematic and local administration of antibiotics have been proposed to this regard. The present work focused on fabricating alginate (Alg) modified brushite (Bru) cements, which could address osteogeneration and local antibiotic demands. To find the proper method of drug incorporation, Gentamicin sulfate (Gen) was loaded into the samples in the form of solution or powder. Several characterization tests including compression test, morphology, cytotoxicity, and cell adhesion assays were carried out to determine the proper concentration of Alg as a modifier of the Bru cement. The results indicated that addition of 1 wt% Alg led to superior mechanical and biological properties of the cement. Moreover, Alg addition changed the morphology of the cement from plate and needle-like structures to petal-like structure. Fourier transform infrared spectroscopy results confirmed the successful loading of Gen on the cements, specifically when Gen solution was used, and X-Ray Diffractometer result indicated that Gen caused a decrease in crystalline size. Furthermore, thermal analysis revealed that Gen-loaded sample had more stable structure as the transformation temperature slightly shifted to a higher one. The stability study confirmed the chemical stability and adequate mechanical performance of the cements within 1 month of soaking time. Finally, the addition of Alg has a positive impact on the release behavior at low concentration of Gen solution so that 20% decrease within 2 weeks of release experiment was remarkably detected.
Collapse
Affiliation(s)
- S M Hossein Dabiri
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genova, Genoa, Italy.,Laboratory for Innovation in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia, Canada
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering, University of Genova, Genoa, Italy
| | - Bahar Aliakbarian
- Department of Supply Chain Management, Eli College of Business, The Axia Institute, Michigan State University, Midland, Michigan
| | - Morteza Mehrjoo
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.,Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Elisabetta Finocchio
- Department of Civil, Chemical and Environmental Engineering, University of Genova, Genoa, Italy
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genova, Genoa, Italy
| |
Collapse
|
12
|
Laskus A, Zgadzaj A, Kolmas J. Selenium-Enriched Brushite: A Novel Biomaterial for Potential Use in Bone Tissue Engineering. Int J Mol Sci 2018; 19:E4042. [PMID: 30558119 PMCID: PMC6321228 DOI: 10.3390/ijms19124042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
In this study, a novel biomaterial, i.e., brushite containing 0.67 wt% of selenium (Se-Bru) was synthesized via a wet precipitation method. Pure, unsubstituted brushite (Bru) was synthesized via the same method and used as a reference material. Different techniques of instrumental analysis were applied to investigate and compare physicochemical properties of both materials. Fourier-Transform Infrared Spectroscopy confirmed the chemical identity of both materials. Scanning Electron Microscopy (SEM) was used to study the morphology and indicated that both samples (Bru and Se-Bru) consisted of plate-like microcrystals. Powder X-ray Diffraction (PXRD) showed that Bru, as well as Se-Bru were crystallographically homogenous. What is more, the data obtained from PXRD studies revealed that the substitution of selenite ions into the crystal structure of the material had clearly affected its lattice parameters. The incorporation of selenium was also confirmed by solid-state ¹H→31P CP MAS kinetics experiments. Additionally, studies on the release kinetics of the elements forming Se-Bru and preliminary cytotoxicity tests were conducted. This preliminary research will favor a better understanding of ionic substitution in calcium phosphates and may be a starting point for the development of selenium-doped brushite cements for potential use in bone tissue impairments treatment.
Collapse
Affiliation(s)
- Aleksandra Laskus
- Department of Analytical Chemistry and Biomaterials, Analytical Group, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| | - Joanna Kolmas
- Department of Analytical Chemistry and Biomaterials, Analytical Group, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
13
|
Self-Setting Calcium Orthophosphate (CaPO4) Formulations. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-5975-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Laskus A, Kolmas J. Ionic Substitutions in Non-Apatitic Calcium Phosphates. Int J Mol Sci 2017; 18:E2542. [PMID: 29186932 PMCID: PMC5751145 DOI: 10.3390/ijms18122542] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/25/2022] Open
Abstract
Calcium phosphate materials (CaPs) are similar to inorganic part of human mineralized tissues (i.e., bone, enamel, and dentin). Owing to their high biocompatibility, CaPs, mainly hydroxyapatite (HA), have been investigated for their use in various medical applications. One of the most widely used ways to improve the biological and physicochemical properties of HA is ionic substitution with trace ions. Recent developments in bioceramics have already demonstrated that introducing foreign ions is also possible in other CaPs, such as tricalcium phosphates (amorphous as well as α and β crystalline forms) and brushite. The purpose of this paper is to review recent achievements in the field of non-apatitic CaPs substituted with various ions. Particular attention will be focused on tricalcium phosphates (TCP) and "additives" such as magnesium, zinc, strontium, and silicate ions, all of which have been widely investigated thanks to their important biological role. This review also highlights some of the potential biomedical applications of non-apatitic substituted CaPs.
Collapse
Affiliation(s)
- Aleksandra Laskus
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| | - Joanna Kolmas
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|