1
|
Gorylewski D, Tyszczuk-Rotko K, Wójciak M, Sowa I. Fast, Simple, and Sensitive Voltammetric Measurements of Acyclovir in Real Samples via Boron-Doped Diamond Electrode. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4480. [PMID: 39336222 PMCID: PMC11433364 DOI: 10.3390/ma17184480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
The voltammetric acyclovir (ACV) trace-level determination procedure has been introduced. This is the first time that a commercially available boron-doped diamond electrode (BDDE) coupled with differential-pulse voltammetry (DPV) has been used for this purpose. The commercially available BDDE is characterized by a short response time, low background current, and very good analytical parameters of ACV determination. Ultimately, DPV measurements using the BDDE in 0.075 mol L-1 PBS with a pH of 7.2 under optimized conditions achieved the lowest detection limit (LOD = 0.0299 nmol L-1) reported in the literature for voltammetric procedures. Moreover, it is highly resistant to the presence of various interfering agents and has been used to analyze pharmaceutical and municipal wastewater samples. The obtained results are consistent with measurements made using chromatographic reference methods.
Collapse
Affiliation(s)
- Damian Gorylewski
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland;
| | - Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.W.); (I.S.)
| |
Collapse
|
2
|
Al Faysal A, Cetinkaya A, Kaya SI, Erdoğan T, Ozkan SA, Gölcü A. Development and Fabrication of a Molecularly Imprinted Polymer-Based Electroanalytical Sensor for the Determination of Acyclovir. ACS OMEGA 2024; 9:9564-9576. [PMID: 38434833 PMCID: PMC10905707 DOI: 10.1021/acsomega.3c09399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Acyclovir (ACV), a synthetic nucleoside derivative of purine, is one of the most potent antiviral medications recommended in the specific management of varicella-zoster and herpes simplex viruses. The molecularly imprinted polymer (MIP) was utilized to create an effective and specific electrochemical sensor using a straightforward photopolymerization process to determine ACV. The polymeric thin coating was developed using the template molecule ACV, a functional monomer acrylamide, a basic monomer 2-hydroxyethyl methacrylate, a cross-linker ethylene glycol dimethacrylate, and a photoinitiator 2-hydroxy-2-methyl propiophenone on the exterior of the glassy carbon electrode (GCE). Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were employed for the purpose of characterizing the constructed sensor (AM-ACV@MIP/GCE). Differential pulse voltammetry and a 5 mM ferrocyanide/ferricyanide ([Fe(CN)6]3-/4-) redox reagent were used to detect the ACV binding to the specific cavities on MIP. The study involves density functional theory (DFT) calculations, which were conducted to investigate template-functional monomer interactions thoroughly, calculate template-functional monomer interaction energies, and determine the optimal template/functional monomer ratio. DFT calculations were performed using Becke's three-parameter hybrid functional with the Lee-Yang-Parr correlation functional (B3LYP) method and 6-31G(d,p) basis set. The sensor exhibits linear performance throughout the concentration region 1 × 10-11 to 1 × 10-10 M, and the limit of detection and limit of quantification were 7.15 × 10-13 M and 2.38 × 10-12 M, respectively. For the electrochemical study of ACV, the sensor demonstrated high accuracy, precision, robustness, and a short detection time. Furthermore, the developed electrochemical sensor exhibited exceptional recovery in tablet dosage form and commercial human blood samples, with recoveries of 99.40 and 100.44%, respectively. The findings showed that the AM-ACV@MIP/GCE sensor would effectively be used to directly assess pharmaceuticals from actual specimens and would particularly detect ACV compared to structurally similar pharmaceutical compounds.
Collapse
Affiliation(s)
- Abdullah Al Faysal
- Faculty
of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Ahmet Cetinkaya
- Faculty
of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey
- Graduate
School of Health Sciences, Ankara University, Ankara 06110, Turkey
| | - Sariye Irem Kaya
- Gulhane
Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara 06018, Turkey
| | - Taner Erdoğan
- Kocaeli
Vocational School, Department of Chemistry and Chemical Processing
Technologies, Kocaeli University, Kocaeli 41140, Turkey
| | - Sibel A. Ozkan
- Faculty
of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara 06560, Turkey
| | - Ayşegül Gölcü
- Faculty
of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
3
|
Kanagavalli P, Natchimuthu Karuppusamy M, Ganesan VS, Saravanan HP, Palanisamy T, Veerapandian M. Electropolymerized Melamine on Electrochemically Reduced Graphene Oxide: Growth Mechanistics, Electrode Processing, and Amperometric Sensing of Acyclovir. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3512-3525. [PMID: 36820624 DOI: 10.1021/acs.langmuir.3c00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-free, cost-efficient, redox-active electrode materials, combining graphene derivatives with nitrogen-rich polymelamine (PM), are widely explored as an interface layer for electrocatalysis and an electrochemical sensor platform. However, conventional chemical routes often yield derivatives of PM suffering from impaired redox behavior, restricting their electron-transfer kinetics. Herein, an optimal potentiodynamic method has been established to electrodeposit PM on electrochemically reduced graphene oxide (ErGO). A supporting electrolyte, containing Cl-, enhances the formation of intermediates NH3+ and ═NH2+ at the monomeric melamine, eventually interacting with the residual oxygenated functional groups of ErGO to form PM. In situ Raman spectrum analysis revealed the influence of the defective area and the graphitization ratio on the ErGO surface during the course of electropolymerization of melamine. Under optimal electrodeposition conditions (E = 0-1.6 V; ν = 0.1 V/s), the amount of electrodeposited PM on the ErGO surface was determined to be 16.5 μg/(cycle·cm2), using electrochemical quartz crystal microbalance analysis. An ErGO-PM-modified glassy carbon electrode (GCE) and a screen-printed electrode exhibit the direct electrooxidation of acyclovir (ACV). Amperometric analyses of ErGO-PM-modified electrodes exhibited the lowest detection limit of 137.4 pM with analytical robustness, rapid steady state, and reproducibility promising for ACV detection in complex biological matrices.
Collapse
Affiliation(s)
- Pandiyaraj Kanagavalli
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Murugasenapathi Natchimuthu Karuppusamy
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Veka Sri Ganesan
- Centre for Education (CFE), CSIR-CECRI, Karaikudi, Tamil Nadu 630003, India
| | | | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
4
|
Kiss L, Nagymihály Z, Szabó P, Kollár L, Kunsági-Máté S. Detection of Residual 2-Phenylphenol on Lemon Rind by Electrochemically Deposited Poly(hydroxybenzaldehyde) and Poly(hydroxybenzoic acid) Polymeric Stackings as Electrode Modifiers. MATERIALS (BASEL, SWITZERLAND) 2022; 16:357. [PMID: 36614694 PMCID: PMC9822095 DOI: 10.3390/ma16010357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
This study explores the characteristics of electrodeposition of the three hydroxybenzaldehyde isomers and selected hydroxybenzoic acids (4-hydroxybenzoic acid, salicylic acid, 3,5-dihydroxybenzoic acid) from mesityl oxide solvent. Similar to recent advances of this solvent, used by electrochemical studies, the carbon-carbon double bond had significant influence on the formation of polymers from the outlined molecules. In case of most substrates the peak currents increased to a steady-state but electropolymerization of some substrates caused significant deactivation. Scanning electron microscopic and complementary voltammetric studies facilitated that the electrochemically formed polymers are present on the electrode surface in stackings. In viewpoint of analysis of 2-phenylphenol, the modifying deposit formed from 4-hydroxybenzaldehyde was the best with 5 µM detection limit obtained with differential pulse voltammetry. Furthermore, a new procedure was chosen for the involvement of a cavitand derivative into the organic layers with the purpose to improve the layer selectivity (subsequent electrochemical polymerization in an other solution). Further studies showed that in this way the sensitivities of as-modified electrodes were a little worse than without this step, thus indicating that application of this step is disadvantageous. Recovery studies of 2-phenylphenol were carried out on lemon rind without any treatment, and it was compared with the case when the outer yellow layer was removed by rasping. The inner tissues showed very high adsorption affinity towards 2-phenylphenol.
Collapse
Affiliation(s)
- László Kiss
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, H-7624 Pécs, Hungary
- Green Chemistry Research Group, Szentágothai Research Center, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Zoltán Nagymihály
- Green Chemistry Research Group, Szentágothai Research Center, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Péter Szabó
- Environmental Analytical and Geoanalytical Research Group, Szentágothai Research Center, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - László Kollár
- Green Chemistry Research Group, Szentágothai Research Center, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Sándor Kunsági-Máté
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, H-7624 Pécs, Hungary
- Green Chemistry Research Group, Szentágothai Research Center, Ifjúság útja 20, H-7624 Pécs, Hungary
| |
Collapse
|
5
|
Lu XY, Li J, Kong FY, Wei MJ, Zhang P, Li Y, Fang HL, Wang W. Improved Performance for the Electrochemical Sensing of Acyclovir by Using the rGO–TiO2–Au Nanocomposite-Modified Electrode. Front Chem 2022; 10:892919. [PMID: 35646815 PMCID: PMC9130495 DOI: 10.3389/fchem.2022.892919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
An electrochemical sensor for sensitive sensing of acyclovir (ACV) was designed by using the reduced graphene oxide–TiO2–Au nanocomposite-modified glassy carbon electrode (rGO–TiO2–Au/GCE). Transmission electron microscopy, X-ray diffractometer, and X-ray photoelectron spectroscopy were used to confirm morphology, structure, and composition properties of the rGO–TiO2–Au nanocomposites. Cyclic voltammetry and linear sweep voltammetry were used to demonstrate the analytical performance of the rGO–TiO2–Au/GCE for ACV. As a result, rGO–TiO2–Au/GCE exerted the best response for the oxidation of ACV under the pH of 6.0 PB solution, accumulation time of 80 s at open-circuit, and modifier amount of 7 µl. The oxidation peak currents of ACV increased linearly with its concentration in the range of 1–100 µM, and the detection limit was calculated to be 0.3 µM (S/N = 3). The determination of ACV concentrations in tablet samples also demonstrated satisfactory results.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Wang
- *Correspondence: Fen-Ying Kong, ; Wei Wang,
| |
Collapse
|
6
|
Wei Y, Yao L, Wu Y, Liu X, Feng J, Ding J, Li K, He Q. Ultrasensitive electrochemical detection for nanomolarity Acyclovir at ferrous molybdate nanorods and graphene oxide composited glassy carbon electrode. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Electroanalytical Methods for Determination of Antiviral Drugs in Pharmaceutical Formulation and Biological Fluids: A Review. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Wei YP, Yao LY, Wu YY, Liu X, Peng LH, Tian YL, Ding JH, Li KH, He QG. Critical Review of Synthesis, Toxicology and Detection of Acyclovir. Molecules 2021; 26:molecules26216566. [PMID: 34770975 PMCID: PMC8587948 DOI: 10.3390/molecules26216566] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023] Open
Abstract
Acyclovir (ACV) is an effective and selective antiviral drug, and the study of its toxicology and the use of appropriate detection techniques to control its toxicity at safe levels are extremely important for medicine efforts and human health. This review discusses the mechanism driving ACV’s ability to inhibit viral coding, starting from its development and pharmacology. A comprehensive summary of the existing preparation methods and synthetic materials, such as 5-aminoimidazole-4-carboxamide, guanine and its derivatives, and other purine derivatives, is presented to elucidate the preparation of ACV in detail. In addition, it presents valuable analytical procedures for the toxicological studies of ACV, which are essential for human use and dosing. Analytical methods, including spectrophotometry, high performance liquid chromatography (HPLC), liquid chromatography/tandem mass spectrometry (LC-MS/MS), electrochemical sensors, molecularly imprinted polymers (MIPs), and flow injection–chemiluminescence (FI-CL) are also highlighted. A brief description of the characteristics of each of these methods is also presented. Finally, insight is provided for the development of ACV to drive further innovation of ACV in pharmaceutical applications. This review provides a comprehensive summary of the past life and future challenges of ACV.
Collapse
Affiliation(s)
- Yan-Ping Wei
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Y.-P.W.); (Y.-Y.W.); (L.-H.P.); (Y.-L.T.)
- Zhuzhou People’s Hospital, Zhuzhou 412001, China; (X.L.); (J.-H.D.)
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China;
| | - Liang-Yuan Yao
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China;
| | - Yi-Yong Wu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Y.-P.W.); (Y.-Y.W.); (L.-H.P.); (Y.-L.T.)
| | - Xia Liu
- Zhuzhou People’s Hospital, Zhuzhou 412001, China; (X.L.); (J.-H.D.)
| | - Li-Hong Peng
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Y.-P.W.); (Y.-Y.W.); (L.-H.P.); (Y.-L.T.)
| | - Ya-Ling Tian
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Y.-P.W.); (Y.-Y.W.); (L.-H.P.); (Y.-L.T.)
| | - Jian-Hua Ding
- Zhuzhou People’s Hospital, Zhuzhou 412001, China; (X.L.); (J.-H.D.)
| | - Kang-Hua Li
- Zhuzhou People’s Hospital, Zhuzhou 412001, China; (X.L.); (J.-H.D.)
- Correspondence: (K.-H.L.); (Q.-G.H.); Tel./Fax: +86-731-2218-3426 (Q.-G.H.)
| | - Quan-Guo He
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Y.-P.W.); (Y.-Y.W.); (L.-H.P.); (Y.-L.T.)
- Zhuzhou People’s Hospital, Zhuzhou 412001, China; (X.L.); (J.-H.D.)
- Hunan Qianjin Xiangjiang Pharmaceutical Joint Stock Co., Ltd., Zhuzhou 412001, China;
- Correspondence: (K.-H.L.); (Q.-G.H.); Tel./Fax: +86-731-2218-3426 (Q.-G.H.)
| |
Collapse
|
9
|
Selcuk O, Demir Y, Erkmen C, Yıldırım S, Uslu B. Analytical Methods for Determination of Antiviral Drugs in Different Matrices: Recent Advances and Trends. Crit Rev Anal Chem 2021; 52:1662-1693. [PMID: 33983841 DOI: 10.1080/10408347.2021.1908111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Viruses are the main pathogenic substances that cause severe diseases in humans and other living things. They are among the most common microorganisms, and consequently, antiviral drugs have emerged to prevent and treat viral infections. Antiviral drugs are an essential drug group considering their prescription and consumption rates for different diseases and indications. Therefore, it is crucial to develop accurate and precise analytical methods to detect antiviral drugs in various matrices. Chromatographic techniques are used frequently for the quantification purpose since they allow simultaneous determination of antivirals. Electrochemical methods have also gained importance since the analysis can be performed quickly without the need for pretreatment. Spectrophotometric and spectrofluorimetric methods are used because they are simple, inexpensive, and less time-consuming methods. The purpose of this review is to present an overview of the analysis of currently used antiviral drugs from 2010 to 2021. Since studies on antiviral drugs are numerous, selected publications were reviewed in this article. The analysis of antiviral drugs was divided into three main groups: chromatographic, spectrometric, and electrochemical methods which were applied to different matrices, including pharmaceutical, biological, and environmental samples.
Collapse
Affiliation(s)
- Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yeliz Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sercan Yıldırım
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
11
|
Ilager D, Shetti NP, Malladi RS, Shetty NS, Reddy KR, Aminabhavi TM. Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Shetti NP, Malode SJ, Nayak DS, Naik RR, Kuchinad GT, Reddy KR, Shukla SS, Aminabhavi TM. Hetero-nanostructured iron oxide and bentonite clay composite assembly for the determination of an antiviral drug acyclovir. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104727] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Abstract
Background:
This review investigates the ophthalmic drugs that have been studied with
voltammetry in the web of science database in the last 10 years.
Introduction:
Ophthalmic drugs are used in the diagnosis, evaluation and treatment of various ophthalmological
diseases and conditions. A significant literature has emerged in recent years that investigates
determination of these active compounds via electroanalytical methods, particularly voltammetry. Low
cost, rapid determination, high availability, efficient sensitivity and simple application make voltammetry
one of the most used methods for determining various kinds of drugs including ophthalmic ones.
Methods:
In this particular review, we searched the literature via the web of science database for ophthalmic
drugs which are investigated with voltammetric techniques using the keywords of voltammetry,
electrochemistry, determination and electroanalytical methods.
Results:
We found 33 types of pharmaceuticals in nearly 140 articles. We grouped them clinically into
seven major groups as antibiotics, antivirals, non-steroidal anti-inflammatory drugs, anti-glaucomatous
drugs, steroidal drugs, local anesthetics and miscellaneous. Voltammetric techniques, electrodes, optimum
pHs, peak potentials, limit of detection values, limit of quantification values, linearity ranges,
sample type and interference effects were compared.
Conclusion:
Ophthalmic drugs are widely used in the clinic and it is important to determine trace
amounts of these species analytically. Voltammetry is a preferred method for its ease of use, high sensitivity,
low cost, and high availability for the determination of ophthalmic drugs as well as many other
medical drugs. The low limits of detection values indicate that voltammetry is quite sufficient for determining
ophthalmic drugs in many media such as human serum, urine and ophthalmic eye drops.
Collapse
Affiliation(s)
- Onur Inam
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ersin Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar University of Health Sciences, Afyonkarahisar, 03200, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
14
|
Tang P, Tang X, Mei S, Xie Y, Liu L, Ren L. Electrochemical antioxidant screening and evaluation based on guanine and chitosan immobilized MoS2 nanosheet modified glassy carbon electrode (guanine/CS/MoS2/GCE). OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn this study, an electrochemical biosensor based on guanine and chitosan immobilized MoS2 nanosheet modified glassy carbon electrode (guanine/CS/MoS2/GCE) was developed and employed for antioxidant screening and antioxidant capacity evaluation. The oxidation peak current of guanine was improved and nearly tripled after modifications of chitosan and MoS2 nanosheet. The immobilized guanine could be damaged by hydroxyl radicals generated in Fenton solution. However, in the presence of antioxidants, the guanine was protected and the oxidation peak current of guanine increased. This process mimics the mechanism of antioxidant protection in human body. The factors affecting preparation of sensor and detection of antioxidant capacity were optimized. At the optimum conditions, the guanine/CS/MoS2/GCE showed wide linear range, low detection limit, satisfactory reproducibility and stability for detection. Ascorbic acid was used as a model antioxidant to evaluate the antioxidant capacity. A good linearity was observed with a correlation coefficient of 0.9959 in the concentrations between 0.5 and 4.0 mg L-1. The antioxidant capacities of three flavonoids were also tested and the rank of antioxidant capacities was ascorbic acid (51.84%), quercetin (45.82%), fisetin (34.39%) and catechin (16.99%). Due to the rapid measurement and low cost, this sensor could provide an available sensing platform for antioxidant screening and evaluation.
Collapse
Affiliation(s)
- Ping Tang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Huangshi, 435003, China
| | - Xiaosheng Tang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization & National Demonstration Center for Experimental Biology Education & College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Shiyong Mei
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha410205, China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha410205, China
| | - Licheng Ren
- Department of Burn and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha410083, China
| |
Collapse
|
15
|
Kulikova TN, Porfireva AV, Vorobev VV, Saveliev AA, Ziyatdinova GK, Evtugyn GA. Discrimination of Tea by the Electrochemical Determination of its Antioxidant Properties by a Polyaniline – DNA – Polyphenazine Dye Modified Glassy Carbon Electrode. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1618321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- T. N. Kulikova
- Chemistry Institute named after A. M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | - A. V. Porfireva
- Chemistry Institute named after A. M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | - V. V. Vorobev
- Interdisciplinary Center of Analytical Microscopy of Kazan Federal University, Kazan, Russian Federation
| | - A. A. Saveliev
- Institute of Environemntal Sciences of Kazan Federal University, Kazan, Russian Federation
| | - G. K. Ziyatdinova
- Chemistry Institute named after A. M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| | - G. A. Evtugyn
- Chemistry Institute named after A. M. Butlerov of Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
16
|
Rana A, Baig N, Saleh TA. Electrochemically pretreated carbon electrodes and their electroanalytical applications – A review. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Karim‐Nezhad G, Khorablou Z, Mehdikhani S. Preparation of a Double‐step Modified Carbon Paste Electrode for Trace Quantification of Acyclovir Using TiO
2
Nanoparticle and β‐Cyclodextrin. ELECTROANAL 2018. [DOI: 10.1002/elan.201800566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Zeynab Khorablou
- Department of ChemistryPayame Noor University Tehran IRAN 19395-3697
| | | |
Collapse
|
18
|
Tarlekar P, Khan A, Chatterjee S. Nanoscale determination of antiviral drug acyclovir engaging bifunctionality of single walled carbon nanotubes – nafion film. J Pharm Biomed Anal 2018; 151:1-9. [DOI: 10.1016/j.jpba.2017.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 11/24/2022]
|
19
|
Danyıldız Z, Uzun D, Calam TT, Hasdemir E. A voltammetric sensor based on glassy carbon electrode modified with 1H-1,2,4-triazole-3-thiol coating for rapid determination of trace lead ions in acetate buffer solution. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.09.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Martínez-Rojas F, Del Valle MA, Isaacs M, Ramírez G, Armijo F. Electrochemical Behaviour Study and Determination of Guanine, 6-Thioguanine, Acyclovir and Gancyclovir on Fluorine-doped SnO2
Electrode. Application in Pharmaceutical Preparations. ELECTROANAL 2017. [DOI: 10.1002/elan.201700516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- F. Martínez-Rojas
- Pontificia Universidad Católica de Chile, Facultad de Química, Departamento de Química Inorgánica; Laboratorio de Bioelectroquímica; Av. Vicuña Mackenna 4860 7820436 Macul Santiago Chile
| | - M. A. Del Valle
- Pontificia Universidad Católica de Chile, Facultad de Química, Departamento de Química Inorgánica; Laboratorio de Bioelectroquímica; Av. Vicuña Mackenna 4860 7820436 Macul Santiago Chile
| | - M. Isaacs
- Pontificia Universidad Católica de Chile, Facultad de Química, Departamento de Química Inorgánica; Laboratorio de Bioelectroquímica; Av. Vicuña Mackenna 4860 7820436 Macul Santiago Chile
| | - Galo Ramírez
- Pontificia Universidad Católica de Chile, Facultad de Química, Departamento de Química Inorgánica; Laboratorio de Bioelectroquímica; Av. Vicuña Mackenna 4860 7820436 Macul Santiago Chile
| | - F. Armijo
- Pontificia Universidad Católica de Chile, Facultad de Química, Departamento de Química Inorgánica; Laboratorio de Bioelectroquímica; Av. Vicuña Mackenna 4860 7820436 Macul Santiago Chile
| |
Collapse
|
21
|
Zhang J, Zhou JP, Dai XH, Liu GZ, Zhang SY. Electrochemical preparation of two nanostructured poly(sulfosalicylic acid) films with different morphologies and properties for selective sensing of dopamine: Comparative study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:151-158. [PMID: 28532016 DOI: 10.1016/j.msec.2017.03.237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/19/2016] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
Abstract
Two nanostructured poly(sulfosalicylic acid) (PSA) films were synthesized from room temperature ionic liquid (RTIL) or aqueous solution on a glassy carbon electrode (GCE) via potentiodynamic electropolymerization. The morphology and properties of the PSA films were characterized with scanning electron microscopy (SEM), scanning probe microscopy (SPM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). It was found that solvent had a major influence on the morphology and electrochemical properties of the resultant PSA films. The PSA(Ι) film, which was prepared from RTIL, consists of granular particles with cracks, whereas the PSA(II) film prepared from aqueous solution consists of nano-triangles with a more compact surface. The blocking effect of the PSA(Ι) film for the [Fe(CN)6]3-/4- electrochemical probe is much stronger, and a remarkably enhanced voltammetric response of the [Ru(NH3)6]3+ electrochemical probe can be observed for the PSA(II) film. When it is used to detect dopamine in the presence of a high concentration of ascorbic acid, PSA(II)/GCE has three linear parts with better discrimination and a detection limit of 0.03μM. For PSA(Ι)/GCE, there are two linear parts with a detection limit of 0.05μM. However, the reproducibility and storage stability of PSA(Ι)/GCE are better than those of PSA(ΙI)/GCE.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; Department of Chemistry, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jun-Ping Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiao-Hui Dai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guang-Zhou Liu
- School of Marine Science, Shandong University, Jinan 250100, China.
| | - Shu-Yong Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
22
|
Nano molar detection of acyclovir, an antiviral drug at nanoclay modified carbon paste electrode. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.04.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|