1
|
Gonçalves MA, Pereira B, Tavares C, Martins T, Cunha E, Ramalho T. Value of contrast-enhanced Magnetic Resonance Imaging (MRI) in the diagnosis of breast cancer. Mini Rev Med Chem 2021; 22:865-872. [PMID: 34355681 DOI: 10.2174/1389557521666210521113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/24/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
This review article aims to address the main features of breast cancer. Thus, the general aspects of this disease have been shown since the first evidence of breast cancer in the world until the numbers today. In this way, there are some ways to prevent breast cancer, such as the woman's lifestyle (healthy eating habits and physical activities) that helps to reduce the incidence of this anomaly. The first noticeable symptom of this anomaly is typically a lump that feels different from the rest of the breast tissue. More than 80% of breast cancer are discovered when the woman feels a lump being present and about 90% of the cases, the cancer is noticed by the woman herself. Currently, the most used method for the detection of cancer and other injuries is the Magnetic Resonance Imaging (MRI) technique. This technique has been shown to be very effective, however, for a better visualization of the images, contrast agents (CAs) are used, which are paramagnetic compounds capable of increasing the relaxation of the hydrogen atoms of the water molecules present in the body tissues. The most used CAs are Gd3+ complexes, although they are very efficient, they are toxic to the organism. Thus, new contrast agents have been studied to replace Gd3+ complexes, we can mention iron oxides as a promising substitute.
Collapse
Affiliation(s)
- Mateus Aquino Gonçalves
- Department of Chemistry, Federal University of Lavras ,P.O. Box 3037, Lavras, MG 37200-000, Brazil
| | - Bruna Pereira
- Department of Chemistry, Federal University of Lavras ,P.O. Box 3037, Lavras, MG 37200-000, Brazil
| | - Camila Tavares
- Department of Chemistry, Federal University of Lavras ,P.O. Box 3037, Lavras, MG 37200-000, Brazil
| | - Taináh Martins
- Department of Chemistry, Federal University of Lavras ,P.O. Box 3037, Lavras, MG 37200-000, Brazil
| | - Elaine Cunha
- Department of Chemistry, Federal University of Lavras ,P.O. Box 3037, Lavras, MG 37200-000, Brazil
| | - Teodorico Ramalho
- Department of Chemistry, Federal University of Lavras ,P.O. Box 3037, Lavras, MG 37200-000, Brazil
| |
Collapse
|
2
|
Lan H, Huang T, Xiao J, Liao Z, Ouyang J, Dong J, Xian CJ, Hu J, Wang L, Ke Y, Liao H. The immuno-reactivity of polypseudorotaxane functionalized magnetic CDMNP-PEG-CD nanoparticles. J Cell Mol Med 2020; 25:561-574. [PMID: 33210833 PMCID: PMC7810964 DOI: 10.1111/jcmm.16109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/17/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022] Open
Abstract
pH‐magnetic dual‐responsive nanocomposites have been widely used in drug delivery and gene therapy. Recently, a polypseudorotaxane functionalized magnetic nanoparticle (MNP) was developed by synthesizing the magnetic nanoparticles with cyclodextrin (CD) molecules (CDMNP) via polyethylene glycol (PEG) (CDMNP‐PEG‐CD). The purpose of this study was to explore the antigenicity and immunogenicity of the nanoparticles in vivo prior to their further application explorations. Here, nanoparticles were assessed in vivo for retention, bio‐distribution and immuno‐reactivity. The results showed that, once administered intravenously, CDMNP‐PEG‐CD induced a temporary blood monocyte response and was cleared effectively from the body through the urine system in mice. The introduction of β‐CD and PEG/β‐CD polypseudorotaxane on SiO2 magnetic nanoparticles (SOMNP) limited particle intramuscular dispersion after being injected into mouse gastrocnemius muscle (GN), which led to the prolonged local inflammation and muscle toxicity by CDMNP and CDMNP‐PEG‐CD. In addition, T cells were found to be more susceptible for β‐CD–modified CDMNP; however, polypseudorotaxane modification partially attenuated β‐CD–induced T cell response in the implanted muscle. Our results suggested that CDMNP‐PEG‐CD nanoparticles or the decomposition components have potential to prime antigen‐presenting cells and to break the muscle autoimmune tolerance.
Collapse
Affiliation(s)
- Haiqiang Lan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangwei Xiao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhaohong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianghui Dong
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Cory J Xian
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Wang
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Yu Ke
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Covalently bonded dithiocarbamate-terminated hyperbranched polyamidoamine polymer on magnetic graphene oxide nanosheets as an efficient sorbent for preconcentration and separation of trace levels of some heavy metal ions in food samples. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00291-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Ke Y, Zhang X, Liu C, Xiao M, Li H, Fan J, Fu P, Wang S, Zan F, Wu G. Polypseudorotaxane functionalized magnetic nanoparticles as a dual responsive carrier for roxithromycin delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:159-170. [PMID: 30889688 DOI: 10.1016/j.msec.2019.01.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 12/12/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
A magnetic-pH dual responsive drug delivery system was prepared for antibacterial therapy to reduce the side effects on nonpathological cells or tissues. Iron oxide (Fe3O4) core was surface-functionalized with silane coupling agents to link β‑cyclodextrin (β-CD) (CDMNP), and a polypseudorotaxanes shell where polyethyleneglycol chains threaded much CD molecules was further prepared on the magnetic Fe3O4 core (CDMNP-PEG-CD) to enhance loading capacity of roxithromycin (ROX). CDMNP-PEG-CD with a hydrodynamic diameter of ~168 nm was cytocompatible, superparamagnetic, magnetic-responsive and stable for 180 min of storage. No significant interaction with serum albumin was shown for the nanocomposites. The in vitro release from ROX-loaded CDMNP-PEG-CD nanocomposites was about 76% of total drug within 30 min at pH 1.0, 1.6-fold of that at pH 7.4 and 2-fold of that at pH 8.0, presenting pH-responsive drug release behaviors. The nanocomposites showed positive antibacterial activity against both E. coli and S. aureus based on an agar diffusion method. The antibacterial activity of the nanocomposites was more sensitive against E. coli than S. aureus, and the inhibition halo against E. coli was 85% more than that of Fe3O4. CDMNP-PEG-CD nanocomposites allowed for the localization and fast concentration of hydrophobic drugs, providing a broad potential range of therapeutic applications.
Collapse
Affiliation(s)
- Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xiaoye Zhang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Caikun Liu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Xiao
- Department of Materials Science and Engineering, School of Chemistry and Materials, Jinan University, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, School of Chemistry and Materials, Jinan University, Guangzhou 510632, China
| | - Jiachen Fan
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengcheng Fu
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuhao Wang
- Department of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fei Zan
- Department of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Gang Wu
- Department of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Gonçalves MA, Santos LS, Peixoto FC, da Cunha EFF, Silva TC, Ramalho TC. Comparing Structure and Dynamics of Solvation of Different Iron Oxide Phases for Enhanced Magnetic Resonance Imaging. ChemistrySelect 2017. [DOI: 10.1002/slct.201701705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Lizandro S. Santos
- Department of Chemical and Petroleum Engineering; Federal University Fluminense
| | - Fernando C. Peixoto
- Department of Chemical and Petroleum Engineering; Federal University Fluminense
| | | | - Telles C. Silva
- Department of Chemistry; Federal University of Lavras; Lavras, MG Brazil
| | - Teodorico C. Ramalho
- Department of Chemistry; Federal University of Lavras; Lavras, MG Brazil
- Center for Basic and Applied Research; University of Hradec Kralove; Hradec Kralove Czech Republic
| |
Collapse
|
6
|
Khaniabadi PM, Majid AMS, Asif M, Khaniabadi BM, Shahbazi-Gahrouei D, Jaafar MS. Breast cancer cell targeted MR molecular imaging probe: Anti-MUC1 antibody-based magnetic nanoparticles. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/851/1/012014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Rastedt W, Thiel K, Dringen R. Uptake of fluorescent iron oxide nanoparticles in C6 glioma cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa6c4d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
A biomimetic Au@BSA-DTA nanocomposites-based contrast agent for computed tomography imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:565-570. [PMID: 28576022 DOI: 10.1016/j.msec.2017.04.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
Abstract
Early detection of cancer is increasingly important for being considered to increase the survival rate in the treatment process. The past decades years have witnessed the great progress in the biological detection application of gold nanoparticles. Herein, we reported a facile one-pot synthesis process to obtain gold nanoparticles (Au@BSA) with bovine serum albumin (BSA) as a biotemplate following with conjugation of diatrizoic acid (DTA) for a potential X-ray computed tomography (CT) imaging contrast agent (Au@BSA-DTA). The as-prepared biomimetic material was characterized systematically by several techniques. It was shown that the prepared biomaterial is colloid stable under the tested range of pH and temperature. The cell cytotoxicity assay, hemolytic assay and cell morphology observation showed that Au@BSA-DTA has good biocompatibility and hemocompatibility at a concentration of Au even up to 80μg/mL. Besides, the biomimetic material Au@BSA-DTA with double radiodense elements of Au and iodine displayed much stronger CT imaging effect compared with the traditional small molecule contrast agents, which paves the potential clinical application in cancer early diagnosis.
Collapse
|
9
|
Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, Lolli MG, Grimaldi S, Rinaldi M, Lisi A. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Sci Rep 2017; 7:46513. [PMID: 28422155 PMCID: PMC5395943 DOI: 10.1038/srep46513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/17/2017] [Indexed: 01/06/2023] Open
Abstract
Magnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferation, cellular viability, cell cycle distribution and progression. We further demonstrated at molecular level that these nanoparticles do not interfere with the expression of key differentiation markers and do not affect pro-inflammatory cytokines response in Caco-2 cells. Overall, these results showed the in vitro biocompatibility of the sub-5 SIO-Fl nanoparticles promising their safe employ for diagnostic and therapeutic biomedical applications.
Collapse
Affiliation(s)
- Sabrina Foglia
- Institute of Materials for Electronics and Magnetism (IMEM), Department of Engineering, ICT and technologies for energy and transportation, National Research Council (CNR), Parma, Italy
| | - Mario Ledda
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Daniela Fioretti
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | | | - Massimiliano Papi
- Institute of Physics, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Maria Grazia Lolli
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Monica Rinaldi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology (IFT), Department of Biomedical Sciences, National Research Council (CNR), Rome, Italy
| |
Collapse
|
10
|
Wang X, Chang Y, Zhang D, Tian B, Yang Y, Wei F. Transferrin-conjugated drug/dye-co-encapsulated magnetic nanocarriers for active-targeting fluorescent/magnetic resonance imaging and anti-tumor effects in human brain tumor cells. RSC Adv 2016. [DOI: 10.1039/c6ra20903c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A combinatorial nanosystem with the advantages of superparamagnetic iron oxide nanoparticles (SPIO NPs) and targeting polymer carriers is expected to improve the therapeutic effects in developing multifunctional delivery systems.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Bioengineering
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Yanyan Chang
- College of Bioengineering
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Dongxu Zhang
- College of Bioengineering
- Henan University of Technology
- Zhengzhou
- P. R. China
| | - Baoming Tian
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Yan Yang
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Fang Wei
- School of Life Sciences
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|