1
|
Lis K, Szechyńska J, Träger D, Sadlik J, Niziołek K, Słota D, Jampilek J, Sobczak-Kupiec A. Hybrid Polymer-Inorganic Materials with Hyaluronic Acid as Controlled Antibiotic Release Systems. MATERIALS (BASEL, SWITZERLAND) 2023; 17:58. [PMID: 38203913 PMCID: PMC10780115 DOI: 10.3390/ma17010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
In recent years, significant developments have taken place in scientific fields such as tissue and materials engineering, which allow for the development of new, intelligent biomaterials. An example of such biomaterials is drug delivery systems that release the active substance directly at the site where the therapeutic effect is required. In this research, polymeric materials and ceramic-polymer composites were developed as carriers for the antibiotic clindamycin. The preparation and characterization of biomaterials based on hyaluronic acid, collagen, and nano brushite obtained using the photocrosslinking technique under UV (ultraviolet) light are described. Physical and chemical analyses of the materials obtained were carried out using Fourier transform infrared spectroscopy (FT-IR) and optical microscopy. The sorption capacities were determined and subjected to in vitro incubation in simulated biological environments such as Ringer's solution, simulated body fluid (SBF), phosphate-buffered saline (PBS), and distilled water. The antibiotic release rate was also measured. The study confirmed higher swelling capacity for materials with no addition of a ceramic phase, thus it can be concluded that brushite inhibits the penetration of the liquid medium into the interior of the samples, leading to faster absorption of the liquid medium. In addition, incubation tests confirmed preliminary biocompatibility. No drastic changes in pH values were observed, which suggests that the materials are stable under these conditions. The release rate of the antibiotic from the biomaterial into the incubation medium was determined using high-pressure liquid chromatography (HPLC). The concentration of the antibiotic in the incubation fluid increased steadily following a 14-day incubation in PBS, indicating continuous antibiotic release. Based on the results, it can be concluded that the developed polymeric material demonstrates potential for use as a carrier for the active substance.
Collapse
Affiliation(s)
- Kamila Lis
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland (K.N.)
| | - Joanna Szechyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, 8 Niezapominajek, 30-239 Krakow, Poland
| | - Dominika Träger
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland (K.N.)
| | - Julia Sadlik
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland (K.N.)
| | - Karina Niziołek
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland (K.N.)
| | - Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland (K.N.)
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland (K.N.)
| |
Collapse
|
2
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
3
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
4
|
Chuysinuan P, Nooeaid P, Thanyacharoen T, Techasakul S, Pavasant P, Kanjanamekanant K. Injectable eggshell-derived hydroxyapatite-incorporated fibroin-alginate composite hydrogel for bone tissue engineering. Int J Biol Macromol 2021; 193:799-808. [PMID: 34743940 DOI: 10.1016/j.ijbiomac.2021.10.132] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023]
Abstract
Tissue engineering is a promising approach to repair and regenerate damaged or lost tissues or organs. In dental aspect, reconstruction of the resorbed alveolar bone after tooth extraction plays an important role in the success of dental substitution, especially in dental implant treatment. The hydroxyapatite (HA)-incorporated fibroin-alginate composite injectable hydrogel was fabricated to be used as scaffold for bone regeneration. HA was synthesized from eggshell biowaste. Fibroin was extracted from Bombyx mori cocoon. The synthesized HA, fibroin and alginate hydrogel were characterized. HA-incorporated fibroin-alginate hydrogel had decreased pore size and porosity compared with pure alginate hydrogel. Thermal analysis showed that hydrogel had a degradation peak of approximately 250 °C. Hydrogel could absorb water, with a swelling ratio of around 300% at 24 h. Hydrogel was degraded as time passed and almost completely degraded at day 7. Its compressive Young's modulus was approximately 0.04 ± 0.02 N/mm2 to 0.10 ± 0.02 N/mm2. Primary cytotoxicity test indicated non-toxic potential of the fabricated hydrogel. Increased ALP activity was observed in MC3T3-E1 cultured in HA-incorporated fibroin-alginate hydrogel. Results suggested the potential use of injectable HA fibroin-alginate hydrogel as dental scaffolding material. Further studies including in vivo examinations are needed prior to its clinical application.
Collapse
Affiliation(s)
- Piyachat Chuysinuan
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Patcharakamon Nooeaid
- Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Ongkarak, Nakhon-Nayok 26120, Thailand
| | | | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kavita Kanjanamekanant
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Prabakaran S, Rajan M. The osteogenic and bacterial inhibition potential of natural and synthetic compound loaded metal–ceramic composite coated titanium implant for orthopedic applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02363b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Schematic illustration of the preparation, electrophoretic deposition, antibacterial and osteogenic bone regeneration abilities of the MHAP/ChN/GGe/GTN composite. Where, the green colored shape with red, yellow and blue spheres indicates the GGe.
Collapse
Affiliation(s)
- Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
6
|
Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, Guerrero-Pérez MO. Nanomaterials in Dentistry: State of the Art and Future Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1770. [PMID: 32906829 PMCID: PMC7557393 DOI: 10.3390/nano10091770] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials are commonly considered as those materials in which the shape and molecular composition at a nanometer scale can be controlled. Subsequently, they present extraordinary properties that are being useful for the development of new and improved applications in many fields, including medicine. In dentistry, several research efforts are being conducted, especially during the last decade, for the improvement of the properties of materials used in dentistry. The objective of the present article is to offer the audience a complete and comprehensive review of the main applications that have been developed in dentistry, by the use of these materials, during the last two decades. It was shown how these materials are improving the treatments in mainly all the important areas of dentistry, such as endodontics, periodontics, implants, tissue engineering and restorative dentistry. The scope of the present review is, subsequently, to revise the main applications regarding nano-shaped materials in dentistry, including nanorods, nanofibers, nanotubes, nanospheres/nanoparticles, and zeolites and other orders porous materials. The results of the bibliographic analysis show that the most explored nanomaterials in dentistry are graphene and carbon nanotubes, and their derivatives. A detailed analysis and a comparative study of their applications show that, although they are quite similar, graphene-based materials seem to be more promising for most of the applications of interest in dentistry. The bibliographic study also demonstrated the potential of zeolite-based materials, although the low number of studies on their applications shows that they have not been totally explored, as well as other porous nanomaterials that have found important applications in medicine, such as metal organic frameworks, have not been explored. Subsequently, it is expected that the research effort will concentrate on graphene and zeolite-based materials in the coming years. Thus, the present review paper presents a detailed bibliographic study, with more than 200 references, in order to briefly describe the main achievements that have been described in dentistry using nanomaterials, compare and analyze them in a critical way, with the aim of predicting the future challenges.
Collapse
Affiliation(s)
- Victoria Bonilla-Represa
- Departamento de Operatoria Dental y Endodoncia, Universidad de Sevilla, E-41009 Sevilla, Spain; (V.B.-R.); (M.H.-M.)
| | | | - Manuela Herrera-Martinez
- Departamento de Operatoria Dental y Endodoncia, Universidad de Sevilla, E-41009 Sevilla, Spain; (V.B.-R.); (M.H.-M.)
| | | |
Collapse
|
7
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
8
|
Xu J, Aoki H, Kasugai S, Otsuka M. Enhancement of mineralization on porous titanium surface by filling with nano-hydroxyapatite particles fabricated with a vacuum spray method. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110772. [DOI: 10.1016/j.msec.2020.110772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/20/2020] [Accepted: 02/22/2020] [Indexed: 02/02/2023]
|
9
|
Manatunga DC, Godakanda VU, de Silva RM, de Silva KMN. Recent developments in the use of organic-inorganic nanohybrids for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1605. [PMID: 31826328 DOI: 10.1002/wnan.1605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023]
Abstract
Organic-inorganic nanohybrid (OINH) structures providing a versatile platform for drug delivery with improved characteristics are an area which has gained recent attention. Much effort has been taken to develop these structures to provide a viable treatment options for much alarming diseases such as cancer, bone destruction, neurological disorders, and so on. This review focuses on current work carried out in producing different types of hybrid drug carriers identifying their properties, fabrication techniques, and areas where they have been applied. A brief introduction on understating the requirement for blending organic-inorganic components into a nanohybrid drug carrier is followed with an elaboration given about the different types of OINHs developed currently highlighting their properties and applications. Then, different fabrication techniques are discussed given attention to surface functionalization, one-pot synthesis, wrapping, and electrospinning methods. Finally, it is concluded by briefing the challenges that are remaining to be addressed to obtain multipurpose nanohybrid drug carriers with wider applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - V Umayangana Godakanda
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
10
|
Properties of Nanohydroxyapatite Coatings Doped with Nanocopper, Obtained by Electrophoretic Deposition on Ti13Zr13Nb Alloy. MATERIALS 2019; 12:ma12223741. [PMID: 31766219 PMCID: PMC6888410 DOI: 10.3390/ma12223741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Nowadays, hydroxyapatite coatings are the most common surface modification of long-term implants. These coatings are characterized by high thickness and poor adhesion to the metallic substrate. The present research is aimed at characterizing the properties of nanohydroxyapatite (nanoHAp) with the addition of copper nanoparticle (nanoCu) coatings deposited on the Ti13Zr13Nb alloy by an electrophoresis process. The deposition of coatings was carried out for various amounts of nanoCu powder and various average particle sizes. Microstructure, topography, phase, and chemical composition were examined with scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Corrosion properties were determined by potentiodynamic polarization technique in simulated body fluid. Nanomechanical properties were determined based on nanoindentation and scratch tests. The wettability of coatings was defined by the contact angle. It was proven that nanoHAp coatings containing nanocopper, compared to nanoHAp coatings without nanometals, demonstrated smaller number of cracks, lower thickness, and higher nanomechanical properties. The influence of the content and the average size of nanoCu on the quality of the coatings was observed. All coatings exhibited hydrophilic properties. The deposition of nanohydroxyapatite coatings doped with nanocopper may be a promising way to improve the antibacterial properties and mechanical stability of coatings.
Collapse
|
11
|
Sumathra M, Rajan M. Pulsed Electrodeposition of HAP/CPG-BSA/CUR Nanocomposite on Titanium Metal for Potential Bone Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:4756-4768. [DOI: 10.1021/acsabm.9b00494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Murugan Sumathra
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
12
|
Formation and in vitro mineralization of electrochemically deposited coatings prepared on micro-arc oxidized titanium alloy. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01293-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Biomimetic modification of poly-l-lysine and electrodeposition of nanocomposite coatings for orthopaedic applications. Colloids Surf B Biointerfaces 2019; 176:115-121. [DOI: 10.1016/j.colsurfb.2018.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023]
|
14
|
De Silva RT, Dissanayake RK, Mantilaka MMMGPG, Wijesinghe WPSL, Kaleel SS, Premachandra TN, Weerasinghe L, Amaratunga GAJ, de Silva KMN. Drug-Loaded Halloysite Nanotube-Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Sustained Antimicrobial Protection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33913-33922. [PMID: 30220194 DOI: 10.1021/acsami.8b11013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Halloysite nanotube (HNT)-reinforced alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning to mimic the natural extracellular matrix (ECM) structure which is beneficial for tissue regeneration. An antiseptic drug, cephalexin (CEF)-loaded HNT, was incorporated into the alginate-based matrix to obtain sustained antimicrobial protection and robust mechanical properties, the key criteria for tissue engineering applications. Electron microscopic imaging and drug release studies revealed that CEF had penetrated into the lumen space of the HNT and also deposited on the outer walls, with a total loading capacity of 30 wt %. Moreover, the diameter of alginate-based nanofibers of the scaffolds ranged from 40 to 522 nm with well-aligned HNTs, resulting in superior mechanical properties. For instance, the addition of 5% (w/w) HNT improved the tensile strength (σ) and elastic modulus by 3-fold and 2-fold, respectively, compared to those of the alginate-based scaffolds without HNT. The fabricated scaffolds exhibited remarkable antimicrobial properties against both Gram-negative and Gram-positive bacteria, and the cytotoxicity studies confirmed the nontoxicity of the fabricated scaffolds. Drug release kinetics showed that CEF inside HNTs diffuses within 24 h and that the diffusion of the drug is delayed by 7 days once the CEF-loaded HNTs are incorporated into the alginate-based nanofibers. These fabricated alginate-based electrospun scaffolds with enhanced mechanical properties and sustained antimicrobial protection hold great potential to be used as artificial ECM scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Rangika Thilan De Silva
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
| | - Ranga K Dissanayake
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
| | | | - W P Sanjeewa Lakmal Wijesinghe
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
| | - Shehan Shalinda Kaleel
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
| | - Thejani Nisansala Premachandra
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine , University of Peradeniya , Peradeniya 20400 , Sri Lanka
| | - Laksiri Weerasinghe
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
| | - Gehan A J Amaratunga
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
- Electrical Engineering Division, Department of Engineering , University of Cambridge , 9 J. J. Thomson Avenue , Cambridge CB3 0FA , U.K
| | - K M Nalin de Silva
- Sri Lanka Institute of Nanotechnology (SLINTEC) , Nanotechnology and Science Park , Mahenwatte, Pitipana, Homagama 10200 , Sri Lanka
- Department of Chemistry , University of Colombo , Colombo 00300 , Sri Lanka
| |
Collapse
|
15
|
Heng C, Zhou X, Zheng X, Liu M, Wen Y, Huang H, Fan D, Hui J, Zhang X, Wei Y. Surface grafting of rare-earth ions doped hydroxyapatite nanorods (HAp:Ln(Eu/Tb)) with hydrophilic copolymers based on ligand exchange reaction: Biological imaging and cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:556-563. [PMID: 30033287 DOI: 10.1016/j.msec.2018.05.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/09/2017] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Rare-earth ions doped hydroxyapatite nanoparticles (HAp:Ln NPs) have demonstrated to be very promising candidates for biological imaging applications owing to their small size and chemical compositions similar to bone. However, these HAp:Ln NPs with controllable size and morphology should be prepared under hydrothermal treatment with hydrophobic molecules as the protective layers. The hydrophobic nature of these luminescent HAp:Ln NPs largely impeded their applications in biomedical fields. In this study, a novel and effective strategy has been developed for the surface modification of HAp:Ln nanorods through the combination of surface ligand exchange reaction and reversible-addition fragmentation chain transfer (RAFT) polymerization using 2-methacryloyloxyethyl phosphorylcholine (MPC) and itaconic acid (IA) as the monomers. Herein, a small molecule adenosine 5'-monophosphate disodium salt (AMP) that contains a phosphate group and two hydroxyl groups was used to displace the hydrophobic oleic acid on pristine HAp NPs through surface ligand exchange reaction owing to its stronger interaction with HAp NPs. On the other hand, the MPC and IA were introduced on HAp NPs through RAFT polymerization after the chain transfer agent was immobilized on the HAp NPs through the esterification reaction. The poly(IA-MPC) could not only endow the high water dispersibility but also be used for loading anticancer agent cisplatin (CDDP) through coordination interaction. To evaluate their potential biomedical applications, the cell uptake behavior, drug loading capacity and release behavior as well as cell viability of HAp:Ln-AMP-poly(IA-MPC) polymeric composites were examined. We demonstrated that the method developed in this work is very effective for introduction of functional polymers onto HAp:Ln nanorods. The HAp:Ln-AMP-poly(IA-MPC) composites are promising for cell imaging and controlled delivery of CDDP.
Collapse
Affiliation(s)
- Chunning Heng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Xin Zhou
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Xiaoyan Zheng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China..
| |
Collapse
|
16
|
Mao Z, Li Y, Yang Y, Fang Z, Chen X, Wang Y, Kang J, Qu X, Yuan W, Dai K, Yue B. Osteoinductivity and Antibacterial Properties of Strontium Ranelate-Loaded Poly(Lactic-co-Glycolic Acid) Microspheres With Assembled Silver and Hydroxyapatite Nanoparticles. Front Pharmacol 2018; 9:368. [PMID: 29720940 PMCID: PMC5915458 DOI: 10.3389/fphar.2018.00368] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/29/2018] [Indexed: 12/25/2022] Open
Abstract
Bone-related infection rates are 4-64% in long open bone fractures and nearly 1% in joint-related surgeries. Treating bone infections and infection-related bone loss is very important. The present study prepared strontium ranelate (SR)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (PM) with assembled silver nanoparticles (AgNPs) and hydroxyapatite nanoparticles (HANPs) (SR-PM-Ag-HA) through a novel solid-in-oil nanosuspension (S/O/N) method to achieve osteoinductivity and antibacterial properties. We evaluated the microstructure, drug release, biocompatibility, osteoinductivity, and antibacterial activity in vitro. The microspheres showed a stable shape and size. The cumulative drug release reached a maximum of ∼90% after 22 days. All groups loaded with SR enhanced MC3T3-E1 cell proliferation to a greater degree than pure PM. The osteoinductivity behavior was investigated by ALP staining and real-time PCR of osteogenic differentiation marker genes. The antibacterial activity was evaluated using antibacterial ability and biofilm formation assays. SR-PM-Ag-HA greatly enhanced osteogenic differentiation and showed excellent antibacterial properties. These results indicated that SR-PM-Ag-HA could be biocompatible and suitable for drug delivery, osteoinduction, and antibiosis, and therefore, have potential applications in the treatment of bone-related infections and promotion of bone formation at infected sites.
Collapse
Affiliation(s)
- Zhenyang Mao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Orthopaedic Surgery, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Fang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yugang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Kang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Qu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Yue
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide. INTERNATIONAL NANO LETTERS 2018. [DOI: 10.1007/s40089-018-0230-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Wijesinghe WPSL, Mantilaka MMMGPG, Peiris TAN, Rajapakse RMG, Wijayantha KGU, Pitawala HMTGA, Premachandra TN, Herath HMTU, Rajapakse RPVJ. Preparation and characterization of mesoporous hydroxyapatite with non-cytotoxicity and heavy metal adsorption capacity. NEW J CHEM 2018. [DOI: 10.1039/c8nj00673c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous hydroxyapatite (MPHA) particles have recently gained a great deal of interest in a broad range of fields including biomedical fields, wastewater treatment and catalysis.
Collapse
Affiliation(s)
- W. P. S. L. Wijesinghe
- Department of Chemistry
- Faculty of Science
- University of Peradeniya
- Peradeniya, 20400
- Sri Lanka
| | | | | | - R. M. G. Rajapakse
- Department of Chemistry
- Faculty of Science
- University of Peradeniya
- Peradeniya, 20400
- Sri Lanka
| | | | - H. M. T. G. A. Pitawala
- Postgraduate Institute of Science
- University of Peradeniya
- Peradeniya
- Sri Lanka
- Department of Geology
| | - T. N. Premachandra
- Department of Veterinary Pathobiology
- Faculty of Veterinary Medicine
- University of Peradeniya
- Peradeniya
- Sri Lanka
| | - H. M. T. U. Herath
- Department of Medical Laboratory Science
- Faculty of Allied Health Sciences
- University of Peradeniya
- Peradeniya
- Sri Lanka
| | - R. P. V. J. Rajapakse
- Department of Veterinary Pathobiology
- Faculty of Veterinary Medicine
- University of Peradeniya
- Peradeniya
- Sri Lanka
| |
Collapse
|
19
|
Li H, Song X, Li B, Kang J, Liang C, Wang H, Yu Z, Qiao Z. Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1078-1087. [DOI: 10.1016/j.msec.2017.04.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 11/26/2022]
|
20
|
Elangomannan S, Louis K, Dharmaraj BM, Kandasamy VS, Soundarapandian K, Gopi D. Carbon Nanofiber/Polycaprolactone/Mineralized Hydroxyapatite Nanofibrous Scaffolds for Potential Orthopedic Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6342-6355. [PMID: 28128919 DOI: 10.1021/acsami.6b13058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hydroxyapatite (Ca10 (PO4)6(OH)2, HAP), a multimineral substituted calcium phosphate is one of the most substantial bone mineral component that has been widely used as bone replacement materials because of its bioactive and biocompatible properties. However, the use of HAP as bone implants is restricted due to its brittle nature and poor mechanical properties. To overcome this defect and to generate suitable bone implant material, HAP is combined with biodegradable polymer (polycaprolactone, PCL). To enhance the mechanical property of the composite, carbon nanofibers (CNF) is incorporated to the composite, which has long been considered for hard and soft tissue implant due to its exceptional mechanical and structural properties. It is well-known that nanofibrous scaffold are the most-prominent material for the bone reconstruction. We have developed a new remarkable CNF/PCL/mineralized hydroxyapatite (M-HAP) nanofibrous scaffolds on titanium (Ti). The as-developed coatings were characterized by various techniques. The results indicate the formation and homogeneous distribution of components in the nanofibrous scaffolds. Incorporation of CNF into the PCL/M-HAP composite significantly improves the adhesion strength and elastic modulus of the scaffolds. Furthermore, the responses of human osteosarcoma (HOS MG63) cells cultured onto the scaffolds demonstrate that the viability of cells were considerably high for CNF-incorporated PCL/M-HAP than for PCL/M-HAP. In vivo analysis show the presence of soft fibrous tissue growth without any significant inflammatory signs, which suggests that incorporated CNF did not counteract the favorable biological roles of HAP. For load-bearing applications, research in various bone models is needed to substantiate the clinical availability. Thus, from the obtained results, we suggest that CNF/PCL/M-HAP nanofibrous scaffolds can be considered as potential candidates for orthopedic applications.
Collapse
Affiliation(s)
| | - Kavitha Louis
- Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu , Thiruvarur 610 005, Tamilnadu, India
| | - Bhagya Mathi Dharmaraj
- Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu , Thiruvarur 610 005, Tamilnadu, India
| | - Venkata Saravanan Kandasamy
- Department of Physics, School of Basic and Applied Sciences, Central University of Tamilnadu , Thiruvarur 610 005, Tamilnadu, India
| | | | | |
Collapse
|
21
|
Wijesinghe WPS, Mantilaka MMMGPG, Rajapakse RMG, Pitawala HMTGA, Premachandra TN, Herath HMTU, Rajapakse RPVJ, Wijayantha KGU. Urea-assisted synthesis of hydroxyapatite nanorods from naturally occurring impure apatite rocks for biomedical applications. RSC Adv 2017. [DOI: 10.1039/c7ra02166f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydroxyapatite (HA) nanoparticles are heavily used materials in biomedical applications.
Collapse
Affiliation(s)
- W. P. S. L. Wijesinghe
- Postgraduate Institute of Science
- University of Peradeniya
- Peradeniya
- Sri Lanka
- Department of Chemistry
| | - M. M. M. G. P. G. Mantilaka
- Postgraduate Institute of Science
- University of Peradeniya
- Peradeniya
- Sri Lanka
- Sri Lanka Institute of Nanotechnology
| | - R. M. G. Rajapakse
- Postgraduate Institute of Science
- University of Peradeniya
- Peradeniya
- Sri Lanka
- Department of Chemistry
| | - H. M. T. G. A. Pitawala
- Postgraduate Institute of Science
- University of Peradeniya
- Peradeniya
- Sri Lanka
- Department of Geology
| | - T. N. Premachandra
- Department of Veterinary Pathobiology
- Faculty of Veterinary Medicine
- University of Peradeniya
- Peradeniya
- Sri Lanka
| | - H. M. T. U. Herath
- Department of Medical Laboratory Science
- Faculty of Allied Health Sciences
- University of Peradeniya
- Peradeniya
- Sri Lanka
| | - R. P. V. J. Rajapakse
- Department of Veterinary Pathobiology
- Faculty of Veterinary Medicine
- University of Peradeniya
- Peradeniya
- Sri Lanka
| | | |
Collapse
|
22
|
Mao Z, Fang Z, Yang Y, Chen X, Wang Y, Kang J, Qu X, Yuan W, Dai K. Strontium ranelate-loaded PLGA porous microspheres enhancing the osteogenesis of MC3T3-E1 cells. RSC Adv 2017; 7:24607-24615. [DOI: 10.1039/c7ra01445g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] Open
Abstract
Biodegradable poly lactic-co-glycolic acid (PLGA) has been used as a tissue engineering scaffold as well as a carrier for the delivery of proteins, drugs, and other macromolecules.
Collapse
Affiliation(s)
- Zhenyang Mao
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Zhiwei Fang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yunqi Yang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xuan Chen
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yugang Wang
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Jian Kang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xinhua Qu
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Weien Yuan
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| |
Collapse
|