1
|
Kanan S, Obeideen K, Moyet M, Abed H, Khan D, Shabnam A, El-Sayed Y, Arooj M, Mohamed AA. Recent Advances on Metal Oxide Based Sensors for Environmental Gas Pollutants Detection. Crit Rev Anal Chem 2024:1-34. [PMID: 38506453 DOI: 10.1080/10408347.2024.2325129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Optimizing materials and associated structures for detecting various environmental gas pollutant concentrations has been a major challenge in environmental sensing technology. Semiconducting metal oxides (SMOs) fabricated at the nanoscale are a class of sensor technology in which metallic species are functionalized with various dopants to modify their chemiresistivity and crystalline scaffolding properties. Studies focused on recent advances of gas sensors utilizing metal oxide nanostructures with a special emphasis on the structure-surface property relationships of some typical n-type and p-type SMOs for efficient gas detection are presented. Strategies to enhance the gas sensor performances are also discussed. These oxide material sensors have several advantages such as ease of handling, portability, and doped-based SMO sensing detection ability of environmental gas pollutants at low temperatures. SMO sensors have displayed excellent sensitivity, selectivity, and robustness. In addition, the hybrid SMO sensors showed exceptional selectivity to some CWAs when irradiated with visible light while also displaying high reversibility and humidity independence. Results showed that TiO2 surfaces can sense 50 ppm SO2 in the presence of UV light and under operating temperatures of 298-473 K. Hybrid SMO displayed excellent gas sensing response. For example, a CuO-ZnO nanoparticle network of a 4:1 vol.% CuO/ZnO ratio exhibited responses three times greater than pure CuO sensors and six times greater than pure ZnO sensors toward H2S. This review provides a critical discussion of modified gas pollutant sensing capabilities of metal oxide nanoparticles under ambient conditions, focusing on reported results during the past two decades on gas pollutants sensing.
Collapse
Affiliation(s)
- Sofian Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Khaled Obeideen
- Sustainable Energy and Power Systems Research Center, RISE, University of Sharjah, Sharjah, UAE
| | - Matthew Moyet
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Heba Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Danyah Khan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Aysha Shabnam
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | | | - Mahreen Arooj
- Department of Chemistry, University of Sharjah, Sharjah, UAE
| | - Ahmed A Mohamed
- Department of Chemistry, University of Sharjah, Sharjah, UAE
| |
Collapse
|
2
|
Kuppu SV, Sonaimuthu M, Marimuthu S, Venkatesan S, Murugesan B, Ahmed N, Karuppanan A, Sengodu P, Jeyaraman A, Thambusamy S, Lee YR. NiO@ZnO composite bimetallic nanocrystalline decorated TiO2-CsPbI3 photo-anode surface modifications for perovskite-sensitized solar cell applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Rakhshan N, Mansournia M, Kashi FJ. A Magnetic Four Component Nanocomposite: Biosynthesis Using Melissa officinalis Leaves Extract, Application in High-Performance Naked-Eye Sensing of Mercury(II) and Efficient Catalytic Reduction of Para-nitrophenol. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Mohsen Behpour, Mazaheri S, Motaghedifard MH. Ultrasounds-Assisted Electrosynthesis of Sponge-Like MnO2 Nanostructures: Design a Novel Device for Nanomolar Sensing of Dopamine. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Sharifalhoseini Z, Entezari MH, Shahidi M. Sonication affects the quantity and the morphology of ZnO nanostructures synthesized on the mild steel and changes the corrosion protection of the surface. ULTRASONICS SONOCHEMISTRY 2018; 41:492-502. [PMID: 29137780 DOI: 10.1016/j.ultsonch.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
The several types of sonication methods were applied to access the different morphologies of ZnO nanostructures on the surface of mild steel. To achieve this goal, a sonictor equipped with the probe extender was used as a high intensity ultrasonic apparatus for direct sonication. Furthermore, an ultrasonic bath (low intensity) and a cup-horn system (high intensity) were applied for indirect sonication. To find the effect of the acoustic waves on the ZnO morphology, the micrographs of obtained surfaces were compared to the sample prepared by the conventional method using scanning electron microscopy (SEM). In this work, the beneficial effects of sonication were subjected on the breaking down the agglomerates to smaller size particles, metal surface activation, and on the facile approach to nanostructures synthesis. The influence of the resulting ZnO structures over the corrosion protection of the electroless Ni-P alloy coatings was evaluated by the potentiodynamic polarization technique (Tafel extrapolation).
Collapse
Affiliation(s)
| | - Mohammad H Entezari
- Sonochemical Research Center, Ferdowsi University of Mashhad, 91779 Mashhad, Iran; Environmental Chemistry Research Center, Department of Chemistry, Ferdowsi University of Mashhad, 91779 Mashhad, Iran.
| | | |
Collapse
|
6
|
Zhu P, Chen Y, Duan M, Liu M, Zhou M. Influence of calcination temperature on the photocatalytic property of Fe–Cu–ZnO/graphene under visible light irradiation. RUSS J APPL CHEM+ 2017. [DOI: 10.1134/s1070427216120144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|