1
|
Richards CJ, Wierenga AT, Brouwers-Vos AZ, Kyrloglou E, Dillingh LS, Mulder PP, Palasantzas G, Schuringa JJ, Roos WH. Elastic properties of leukemic cells linked to maturation stage and integrin activation. iScience 2025; 28:112150. [PMID: 40201128 PMCID: PMC11978321 DOI: 10.1016/j.isci.2025.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/10/2025] Open
Abstract
Acute myeloid leukemia (AML) remains challenging to cure. In addition to mutations that alter cell functioning, biophysical properties are modulated by external cues. In particular, membrane proteins that interact with the bone marrow niche can induce cellular changes. Here, we develop an atomic force microscopy (AFM) approach to measure non-adherent AML cell mechanical properties. The Young's modulus of the AML cell line, THP-1, increased in response to retronectin, whereas knock-out of the adhesion protein ITGB1 resulted in no response to retronectin. Confocal microscopy revealed different actin cytoskeleton morphologies for wild-type and ITGB1 knock-out cells exposed to retronectin. These results indicate that ITGB1 mediates stimuli-induced cellular mechanoresponses through cytoskeletal changes. We next used AFM to investigate the elastic properties of primary AML cells and found that more committed cells had lower Young's moduli than immature AMLs. Overall, this provides a platform for investigating the molecular mechanisms involved in leukemic cell mechanoresponse.
Collapse
Affiliation(s)
- Ceri J. Richards
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
| | - Albertus T.J. Wierenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Annet Z. Brouwers-Vos
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Emmanouil Kyrloglou
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Laura S. Dillingh
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
- Nanostructure Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Patty P.M.F.A. Mulder
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Georgios Palasantzas
- Nanostructure Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
2
|
Chen C, Wang S, Chen X, Xie Z, Zhang P, Bu F, Huang L, Zhao D, Wang Y, Liu F, Xie W, Li G, Wang X. Antimicrobial Silicon Rubber Crosslinked with Bornyl-Siloxane. Macromol Rapid Commun 2025; 46:e2400930. [PMID: 39782700 DOI: 10.1002/marc.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Silicone rubber (SiR) has a wide range of medical applications, but it lacks antimicrobial properties, leading to potential infection issues with related implants or medical devices. Most studies focus on adding anti-bacterial agents or surface modification, which usually result in composites with anti-bacterial properties, rather than synthesizing SiR with intrinsically antimicrobial performances. To tackle this issue, a double substituted bornyl-siloxane crosslinker (BC) is designed. This crosslinker can react with hydroxy-terminated polydimethylsiloxane (PDMS) at room temperature to yield SiR with borneol side groups. The process is simple without using additional solvents. Antimicrobial assay on SiR cured with different ratios of BC/PDMS showed that 20 wt.% BC cross-linked network exhibited outstanding anti-bacterial adhesion (Escherichia coli 99.4%, Staphylococcus aureus 97.3%) performance and long-lasting anti-mold (Aspergillus niger over 99% for 30 days) adhesion properties. Moreover, the subcutaneous implantation model in mice demonstrated its excellent anti-infection, biocompatibility and safety. Therefore, this material is promising for widespread adoption in the medical field, especially in silicon-based products or coatings.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Songtao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyu Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zixu Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pengfei Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqiang Bu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lifei Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuanhang Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fang Liu
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Forgham H, Zhu J, Huang X, Zhang C, Biggs H, Liu L, Wang YC, Fletcher N, Humphries J, Cowin G, Mardon K, Kavallaris M, Thurecht K, Davis TP, Qiao R. Multifunctional Fluoropolymer-Engineered Magnetic Nanoparticles to Facilitate Blood-Brain Barrier Penetration and Effective Gene Silencing in Medulloblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401340. [PMID: 38647396 PMCID: PMC11220643 DOI: 10.1002/advs.202401340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Patients with brain cancers including medulloblastoma lack treatments that are effective long-term and without side effects. In this study, a multifunctional fluoropolymer-engineered iron oxide nanoparticle gene-therapeutic platform is presented to overcome these challenges. The fluoropolymers are designed and synthesized to incorporate various properties including robust anchoring moieties for efficient surface coating, cationic components to facilitate short interference RNA (siRNA) binding, and a fluorinated tail to ensure stability in serum. The blood-brain barrier (BBB) tailored system demonstrates enhanced BBB penetration, facilitates delivery of functionally active siRNA to medulloblastoma cells, and delivers a significant, almost complete block in protein expression within an in vitro extracellular acidic environment (pH 6.7) - as favored by most cancer cells. In vivo, it effectively crosses an intact BBB, provides contrast for magnetic resonance imaging (MRI), and delivers siRNA capable of slowing tumor growth without causing signs of toxicity - meaning it possesses a safe theranostic function. The pioneering methodology applied shows significant promise in the advancement of brain and tumor microenvironment-focused MRI-siRNA theranostics for the better treatment and diagnosis of medulloblastoma.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Cheng Zhang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Heather Biggs
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Yi Cheng Wang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Nicholas Fletcher
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - James Humphries
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Gary Cowin
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Karine Mardon
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Maria Kavallaris
- Children's Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNew South Wales2052Australia
- School of Clinical MedicineFaculty of Medicine & HealthUNSW SydneyKensingtonNew South Wales2052Australia
- UNSW Australian Centre for NanomedicineFaculty of EngineeringUNSW SydneyKensingtonNew South Wales2052Australia
- UNSW RNA InstituteFaculty of ScienceUNSW SydneyKensingtonNew South Wales2052Australia
| | - Kristofer Thurecht
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Ruirui Qiao
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| |
Collapse
|
4
|
Kim YH, Koo H, Kim MS, Jung SD. Fabrication of a photo-crosslinkable fluoropolymer-passivated flexible neural probe and acute recording and stimulation performances in vivo. BIOMATERIALS ADVANCES 2023; 154:213629. [PMID: 37742557 DOI: 10.1016/j.bioadv.2023.213629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/25/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Herein, we fabricated fluorine-containing, polymer-based, flexible neural probes with fluorinated ethylene propylene (FEP) films as the substrates and photo-crosslinkable fluoropolymers as the passivation material. For fabrication, metal-free Au layer formation on the FEP film, the simultaneous photo-adhesion and photo-patterning technique, and the pulsed-laser scanning probe shaping technique were combined, followed by Au electrode surface modification. The resultant probes achieved a charge injection limit equal to 5.18 mC cm-2 by implementing iridium oxide-modified nanoporous Au (IrOx/NPG) structures. We performed simultaneous in vivo micro-stimulations of the Schaffer collateral fibres and recorded the evoked field excitatory postsynaptic potentials (fEPSPs) in the stratum radiatum layer of the hippocampal Cornu Ammonis 1 region using a single probe. Inducing the fEPSP at very low charge per pulse settings (3.2-3.6 nC/pulse) indicates the efficient charge injection capability of the IrOx/NPG electrode, thereby enabling safe, prolonged, and thrifty micro-stimulations. Furthermore, the single probe-induced and recorded long-term potentiation persisted for periods longer than 60 min following theta-burst stimulation. The materials used in this study are all biocompatible and chemically robust. The fabricated neural probes can be applied in chronic clinical trials in vivo.
Collapse
Affiliation(s)
- Yong Hee Kim
- Cybre Brain Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, Republic of Korea
| | - Ho Koo
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Min Sun Kim
- Department of Physiology, Wonkwang University School of Medicine, 895 Munwang-ro, Iksan 570-711, Jeollabuk-do, Republic of Korea
| | - Sang-Don Jung
- Cybre Brain Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 305-700, Republic of Korea.
| |
Collapse
|
5
|
Etxeberria L, Messelmani T, Badiola JH, Llobera A, Fernandez L, Vilas-Vilela JL, Leclerc E, Legallais C, Jellali R, Zaldua AM. Validation of HepG2/C3A Cell Cultures in Cyclic Olefin Copolymer Based Microfluidic Bioreactors. Polymers (Basel) 2022; 14:polym14214478. [PMID: 36365472 PMCID: PMC9655789 DOI: 10.3390/polym14214478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Organ-on-chip (OoC) technology is one of the most promising in vitro tools to replace the traditional animal experiment-based paradigms of risk assessment. However, the use of OoC in drug discovery and toxicity studies remain still limited by the low capacity for high-throughput production and the incompatibility with standard laboratory equipment. Moreover, polydimethylsiloxanes, the material of choice for OoC, has several drawbacks, particularly the high absorption of drugs and chemicals. In this work, we report the development of a microfluidic device, using a process adapted for mass production, to culture liver cell line in dynamic conditions. The device, made of cyclic olefin copolymers, was manufactured by injection moulding and integrates Luer lock connectors compatible with standard medical and laboratory instruments. Then, the COC device was used for culturing HepG2/C3a cells. The functionality and behaviour of cultures were assessed by albumin secretion, cell proliferation, viability and actin cytoskeleton development. The cells in COC device proliferated well and remained functional for 9 days of culture. Furthermore, HepG2/C3a cells in the COC biochips showed similar behaviour to cells in PDMS biochips. The present study provides a proof-of-concept for the use of COC biochip in liver cells culture and illustrate their potential to develop OoC.
Collapse
Affiliation(s)
- Leire Etxeberria
- Leartiker S. Coop., Xemein Etorbidea 12, 48270 Markina-Xemein, Spain
- microLIQUID S.L, Goiru 9, 20500 Arrasate-Mondragon, Spain
- Macromolecular Chemistry Research Group (labquimac), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: (L.E.); (R.J.)
| | - Taha Messelmani
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Jon Haitz Badiola
- Leartiker S. Coop., Xemein Etorbidea 12, 48270 Markina-Xemein, Spain
| | - Andreu Llobera
- microLIQUID S.L, Goiru 9, 20500 Arrasate-Mondragon, Spain
| | - Luis Fernandez
- microLIQUID S.L, Goiru 9, 20500 Arrasate-Mondragon, Spain
| | - José Luis Vilas-Vilela
- Macromolecular Chemistry Research Group (labquimac), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- BC Materials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Eric Leclerc
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Tokyo 153-8505, Japan
| | - Cécile Legallais
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Rachid Jellali
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (L.E.); (R.J.)
| | - Ane Miren Zaldua
- Leartiker S. Coop., Xemein Etorbidea 12, 48270 Markina-Xemein, Spain
| |
Collapse
|
6
|
Lussi J, Mattmann M, Sevim S, Grigis F, De Marco C, Chautems C, Pané S, Puigmartí‐Luis J, Boehler Q, Nelson BJ. A Submillimeter Continuous Variable Stiffness Catheter for Compliance Control. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101290. [PMID: 34272935 PMCID: PMC8456283 DOI: 10.1002/advs.202101290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/10/2021] [Indexed: 05/02/2023]
Abstract
Minimally invasive robotic surgery often requires functional tools that can change their compliance to adapt to the environment and surgical needs. This paper proposes a submillimeter continuous variable stiffness catheter equipped with a phase-change alloy that has a high stiffness variation in its different states, allowing for rapid compliance control. Variable stiffness is achieved through a variable phase boundary in the alloy due to a controlled radial temperature gradient. This catheter can be safely navigated in its soft state and rigidified to the required stiffness during operation to apply a desired force at the tip. The maximal contact force that the catheter applies to tissue can be continuously modified by a factor of 400 (≈20 mN-8 N). The catheter is equipped with a magnet and a micro-gripper to perform a fully robotic ophthalmic minimally invasive surgery on an eye phantom by means of an electromagnetic navigation system.
Collapse
Affiliation(s)
- Jonas Lussi
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Michael Mattmann
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Semih Sevim
- Institute of Chemical and BioengineeringETH ZurichVladimir Prelog Weg 1ZurichCH‐8093Switzerland
| | - Fabian Grigis
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Carmela De Marco
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Christophe Chautems
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Josep Puigmartí‐Luis
- Departament de Ciència dels Materials i Química FísicaInstitut de Química Teòrica i ComputacionalBarcelona08028Spain
- ICREACatalan Institution for Research and Advanced StudiesPg. Lluís Companys 23Barcelona08010Spain
| | - Quentin Boehler
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| |
Collapse
|
7
|
Bonneaud C, Howell J, Bongiovanni R, Joly-Duhamel C, Friesen CM. Diversity of Synthetic Approaches to Functionalized Perfluoropolyalkylether Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jon Howell
- Science Department, Centenary University, 400 Jefferson Street, Hackettstown, New Jersey 07840, United States
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, 10128 Torino, Italy
| | | | - Chadron M. Friesen
- Department of Chemistry, Trinity Western University, 7600 Glover Road, Langley, British Columbia V2Y 1Y1, Canada
| |
Collapse
|
8
|
Dong Q, Fu Y, Wang H, Bai R, Bai W. Synthesis and Characterization of High-Performance Polymers Based on Perfluoropolyalkyl Ethers Using an Environmentally Friendly Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12513-12520. [PMID: 32787006 DOI: 10.1021/acs.langmuir.0c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In comparison with polymers containing long perfluoroalkyl chains (CnF2n+1, n ≥ 8), perfluoropolyalkyl ethers (PFPEs) have been demonstrated to be environmentally friendly polymeric materials. Thus, PFPEs are expected to be alternatives to long perfluoroalkyl chain polymers. However, due to the poor solubility in common organic solvents they are generally prepared and used in fluorinated solvents, which can also cause harmful impacts on the environment. Therefore, it is urgent to explore a strategy for the preparation of high-performance PFPE polymers using environmentally friendly solvents. In this study, three kinds of novel methacrylate macromers bearing PFPE chains with low molar mass were designed and synthesized. The PFPE polymer coatings on polycarbonate plates were obtained by a combinational strategy of spin-coating and in situ photopolymerization of the macromers under UV irradiation. The results indicated that the polymer coatings could be prepared in nonfluorinated solvents, such as 2-propanol. Then the surface properties of the polymer coatings were investigated. It was found that the surface properties of the polymer coatings were related to the structures of the polymers. When CONH-C6H4 as a spacer was incorporated between the backbone and the PFPE chain, the hydrophobicity and oleophobicity of the polymer coatings were significantly enhanced, which is attributed to hydrogen bonds and π-π interaction between the PFPE chains. It is obvious that the synergetic effect of hydrogen bonds and π-π interaction can facilitate the PFPE chains to form a more stable fluorine-rich surface of the polymer coatings. Therefore, synthesis of a high-performance PFPE polymer has been successfully achieved based on PFPEs using an environmentally friendly solvent.
Collapse
Affiliation(s)
- Qibao Dong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yong Fu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Ruke Bai
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei Bai
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
9
|
Drebezghova V, Gojzewski H, Allal A, Hempenius MA, Nardin C, Vancso GJ. Network Mesh Nanostructures in Cross‐Linked Poly(Dimethylsiloxane) Visualized by AFM. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Viktoriia Drebezghova
- Universite de Pau et des Pays de l'AdourE2S UPPACNRSIPREMTechnopôle Hélioparc 2 avenue du Président Angot Pau 64053 France
- Materials Science and Technology of PolymersFaculty of Science and TechnologyUniversity of Twente Drienerlolaan 5 Enschede NB 7522 The Netherlands
| | - Hubert Gojzewski
- Materials Science and Technology of PolymersFaculty of Science and TechnologyUniversity of Twente Drienerlolaan 5 Enschede NB 7522 The Netherlands
| | - Ahmed Allal
- Universite de Pau et des Pays de l'AdourE2S UPPACNRSIPREMTechnopôle Hélioparc 2 avenue du Président Angot Pau 64053 France
| | - Mark A. Hempenius
- Materials Science and Technology of PolymersFaculty of Science and TechnologyUniversity of Twente Drienerlolaan 5 Enschede NB 7522 The Netherlands
| | - Corinne Nardin
- Universite de Pau et des Pays de l'AdourE2S UPPACNRSIPREMTechnopôle Hélioparc 2 avenue du Président Angot Pau 64053 France
| | - G. Julius Vancso
- Materials Science and Technology of PolymersFaculty of Science and TechnologyUniversity of Twente Drienerlolaan 5 Enschede NB 7522 The Netherlands
| |
Collapse
|
10
|
|
11
|
Scharin-Mehlmann M, Häring A, Rommel M, Dirnecker T, Friedrich O, Frey L, Gilbert DF. Nano- and Micro-Patterned S-, H-, and X-PDMS for Cell-Based Applications: Comparison of Wettability, Roughness, and Cell-Derived Parameters. Front Bioeng Biotechnol 2018; 6:51. [PMID: 29765941 PMCID: PMC5938557 DOI: 10.3389/fbioe.2018.00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Polydimethylsiloxane (PDMS) is a promising biomaterial for generating artificial extracellular matrix (ECM) like patterned topographies, yet its hydrophobic nature limits its applicability to cell-based approaches. Although plasma treatment can enhance the wettability of PDMS, the surface is known to recover its hydrophobicity within a few hours after exposure to air. To investigate the capability of a novel PDMS-type (X-PDMS) for in vitro based assessment of physiological cell properties, we designed and fabricated plane as well as nano- and micrometer-scaled pillar-patterned growth substrates using the elastomer types S-, H- and X-PDMS, which were fabricated from commercially available components. Most importantly, we compared X-PDMS based growth substrates which have not yet been investigated in this context with H- as well as well-known S-PDMS based substrates. Due to its applicability to fabricating nanometer-sized topographic features with high accuracy and pattern fidelity, this material may be of high relevance for specific biomedical applications. To assess their applicability to cell-based approaches, we characterized the generated surfaces using water contact angle (WCA) measurement and atomic force microscopy (AFM) as indicators of wettability and roughness, respectively. We further assessed cell number, cell area and cellular elongation as indirect measures of cellular viability and adhesion by image cytometry and phenotypic profiling, respectively, using Calcein and Hoechst 33342 stained human foreskin fibroblasts as a model system. We show for the first time that different PDMS types are differently sensitive to plasma treatment. We further demonstrate that surface hydrophobicity changes along with changing height of the pillar-structures. Our data indicate that plane and structured X-PDMS shows cytocompatibility and adhesive properties comparable to the previously described elastomer types S- and H-PDMS. We conclude that nanometer-sized structuring of X-PDMS may serve as a powerful method for altering surface properties toward production of biomedical devices for cell-based applications.
Collapse
Affiliation(s)
- Marina Scharin-Mehlmann
- Chair of Electron Devices, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aaron Häring
- Chair of Electron Devices, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mathias Rommel
- Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Erlangen, Germany
| | - Tobias Dirnecker
- Chair of Electron Devices, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
| | - Lothar Frey
- Chair of Electron Devices, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany
| |
Collapse
|
12
|
Hu X, Hu T, Guan G, Yu S, Wu Y, Wang L. Control of weft yarn or density improves biocompatibility of PET small diameter artificial blood vessels. J Biomed Mater Res B Appl Biomater 2017; 106:954-964. [PMID: 28456004 DOI: 10.1002/jbm.b.33909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/28/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Xingyou Hu
- Department of Technical TextilesCollege of Textiles, Donghua UniversityShanghai201620 China
- Key Laboratory of Textile Science and Technology (Donghua University)Ministry of EducationShanghai201620 China
| | - Tao Hu
- Department of ImmunologyBinzhou Medical CollegeYantai264003 China
| | - Guoping Guan
- Department of Technical TextilesCollege of Textiles, Donghua UniversityShanghai201620 China
| | - Shaoting Yu
- Department of Technical TextilesCollege of Textiles, Donghua UniversityShanghai201620 China
- Key Laboratory of Textile Science and Technology (Donghua University)Ministry of EducationShanghai201620 China
| | - Yufen Wu
- Department of Technical TextilesCollege of Textiles, Donghua UniversityShanghai201620 China
| | - Lu Wang
- Department of Technical TextilesCollege of Textiles, Donghua UniversityShanghai201620 China
- Key Laboratory of Textile Science and Technology (Donghua University)Ministry of EducationShanghai201620 China
| |
Collapse
|
13
|
Jellali R, Bertrand V, Alexandre M, Rosière N, Grauwels M, De Pauw-Gillet MC, Jérôme C. Photoreversibility and Biocompatibility of Polydimethylsiloxane-Coumarin as Adjustable Intraocular Lens Material. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/26/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Rachid Jellali
- Center for Education and Research on Macromolecules (CERM); Chemistry Department; University of Liege; B6 Sart-Tilman B-4000 Liege Belgium
| | - Virginie Bertrand
- Laboratory of Mammalian Cell Culture (GIGA-R); University of Liege; B6 Sart-Tilman B-4000 Liege Belgium
| | - Michaël Alexandre
- Center for Education and Research on Macromolecules (CERM); Chemistry Department; University of Liege; B6 Sart-Tilman B-4000 Liege Belgium
| | - Nancy Rosière
- Laboratory of Mammalian Cell Culture (GIGA-R); University of Liege; B6 Sart-Tilman B-4000 Liege Belgium
| | - Magda Grauwels
- Département Clinique des Animaux de Compagnie et des Équidés; University of Liège; B44 Sart-Tilman B-4000 Liege Belgium
| | | | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM); Chemistry Department; University of Liege; B6 Sart-Tilman B-4000 Liege Belgium
| |
Collapse
|