1
|
Morsi NG, Ali SM, Elsonbaty SS, Afifi AA, Hamad MA, Gao H, Elsabahy M. Poly(glycerol methacrylate)-based degradable nanoparticles for delivery of small interfering RNA. Pharm Dev Technol 2017; 23:387-399. [PMID: 28347210 DOI: 10.1080/10837450.2017.1312443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleic acids therapeutic efficiency is generally limited by their low stability and intracellular bioavailability, and by the toxicity of the carriers used to deliver them to the target sites. Aminated poly(glycerol methacrylate) polymers are biodegradable and pH-sensitive polymers that have been used previously to deliver antisense oligonucleotide and show high transfection efficiency. The purpose of this study is to compare the efficiency and toxicity of aminated linear poly(glycerol methacrylate) (ALT) biodegradable polymer to the most commonly used cationic degradable (i.e. chitosan) and non-degradable (i.e. polyethylenimine (PEI)) polymers for delivery of short interfering RNA (siRNA). ALT, PEI and chitosan polymers were able to form nanosized particles with siRNA. Size, size-distribution and zeta-potential were measured over a wide range of nitrogen-to-phosphate (N/P) ratios, and the stability of the formed nanoparticles in saline and upon freeze-drying was also assessed. No significant cytotoxicity at the range of the tested concentrations of ALT and chitosan nanoparticles was observed, whereas the non-degradable PEI showed significant toxicity in huh-7 hepatocyte-derived carcinoma cell line. The safety profiles of the degradable polymers (ALT and chitosan) over non-degradable PEI were demonstrated in vitro and in vivo. In addition, ALT nanoparticles were able to deliver siRNA in vivo with significantly higher efficiency than chitosan nanoparticles. The results in the present study give evidence of the great implications of ALT nanoparticles in biomedical applications due to their biocompatibility, low cytotoxicity, high stability and simple preparation method.
Collapse
Affiliation(s)
- Noha G Morsi
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Shimaa M Ali
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Sherouk S Elsonbaty
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Ahmed A Afifi
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt
| | - Mostafa A Hamad
- b Department of Surgery, Faculty of Medicine , Assiut University , Assiut , Egypt
| | - Hui Gao
- c School of Chemistry and Chemical Engineering , Tianjin University of Technology , Tianjin , China
| | - Mahmoud Elsabahy
- a Assiut International Center of Nanomedicine , Al-Rajhy Liver Hospital, Assiut University , Assiut , Egypt.,d Laboratory for Synthetic-Biologic Interactions, Department of Chemistry , Texas A&M University , College Station , TX , USA.,e Department of Pharmaceutics, Faculty of Pharmacy , Assiut University , Assiut , Egypt.,f Misr University for Science and Technology , 6th of October City , Egypt
| |
Collapse
|
2
|
Singhsa P, Manuspiya H, Narain R. Study of the RAFT homopolymerization and copolymerization of N-[3-(dimethylamino)propyl]methacrylamide hydrochloride and evaluation of the cytotoxicity of the resulting homo- and copolymers. Polym Chem 2017. [DOI: 10.1039/c7py00837f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Well-defined p(DMAPMA·HCl) homopolymers with good chain extension ability were obtained by the RAFT in acidic conditions and precipitation in acetone.
Collapse
Affiliation(s)
- Pratyawadee Singhsa
- Department of Chemical and Materials Engineering
- Donadeo Innovation Centre in Engineering
- Edmonton
- Canada
- The Petroleum and Petrochemical College
| | - Hathaikarn Manuspiya
- The Petroleum and Petrochemical College
- Center of Excellence on Petrochemical and Materials Technology
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Ravin Narain
- Department of Chemical and Materials Engineering
- Donadeo Innovation Centre in Engineering
- Edmonton
- Canada
| |
Collapse
|
3
|
Salakhieva D, Shevchenko V, Németh C, Gyarmati B, Szilágyi A, Abdullin T. Structure-biocompatibility and transfection activity relationships of cationic polyaspartamides with (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. Int J Pharm 2016; 517:234-246. [PMID: 27931785 DOI: 10.1016/j.ijpharm.2016.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/02/2016] [Indexed: 01/18/2023]
Abstract
A series of 14 cationic derivatives of poly(aspartic acid) i.e. cationic polyaspartamides with different (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups was synthesized by nucleophilic addition on polysuccinimide. The resulting polyaspartamides have moderate amphiphilic properties. Relationships between the structure and ratio of side groups and in vitro properties of polyaspartamides, including their cytotoxic and membrane-damaging activity towards human cell lines, primary skin fibroblasts and erythrocytes, were established and discussed. Cationic polyaspartamides vary in their DNA-binding, condensing and nuclease-protecting characteristics depending on the concentration ratio of (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. Effective cell transfection was achieved upon polyaspartamide-mediated plasmid DNA delivery in serum-free medium in the presence of chloroquine. Effect of serum proteins adsorption onto polyaspartamide based polyplexes, and the role of concentration of polyplexes in culture medium in their colloidal stability and transfection process were demonstrated. Synthesized polyaspartamides are biocompatible and long-acting gene carriers, which are applied to cells after dilution and without washing, thus providing transfection level comparable to that of commercial transfection reagent.
Collapse
Affiliation(s)
- Diana Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Vesta Shevchenko
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Csaba Németh
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - Timur Abdullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
| |
Collapse
|