1
|
Singh N, Srikanth KP, Gopal V, Rajput M, Manivasagam G, Prashanth KG, Chatterjee K, Suwas S. In situ production of low-modulus Ti-Nb alloys by selective laser melting and their functional assessment toward orthopedic applications. J Mater Chem B 2024; 12:5982-5993. [PMID: 38809161 DOI: 10.1039/d4tb00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
This work aimed to manufacture Ti-28.5Nb and Ti-40.0Nb (wt%) alloys in situ via selective laser melting (SLM) from Ti and Nb elemental powders. X-ray diffraction analysis revealed complete β-phase (cubic) in Ti-40.0Nb and a mixture of (α'' orthorhombic + β cubic) phases in Ti-28.5Nb were formed, whereas few of the Nb particles remained only partially fused during manufacturing. The fraction of partially melted Nb particles was determined as ∼2 and ∼18% in Ti-28.5Nb and Ti-40Nb, respectively. Mechanical characterization revealed higher hardness and more strength in Ti-28.5Nb than in Ti-40.0Nb due to the presence of the α'' phase in the former. Tribocorrosion tests reveal a significantly better wear-corrosion resistance for Ti-40.0Nb, as determined from a lower total volume loss in Ti-40.0Nb (∼2 × 10-4 mm-3) than in Ti-28.5Nb (∼13 × 10-2 mm-3). The lower volume loss and better corrosion resistance behavior are attributed to the β phase, which was dominant in Ti-40.0Nb. Cell studies reveal no toxicity for up to 7 days. Both the alloys were better at supporting cell proliferation than wrought Ti6Al4V. This study presents a route to preparing Ti-Nb alloys in situ by SLM that are promising candidates for biomedical applications.
Collapse
Affiliation(s)
- Neera Singh
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - K P Srikanth
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Vasanth Gopal
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
| | - Monika Rajput
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Geetha Manivasagam
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
- CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - K G Prashanth
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Satyam Suwas
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Kozadaeva M, Surmeneva M, Khrapov D, Rybakov V, Surmenev R, Koptyug A, Vladescu Dragomir A, Cotrut CM, Tyurin A, Grubova I. Assessment of Microstructural, Mechanical and Electrochemical Properties of Ti-42Nb Alloy Manufactured by Electron Beam Melting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4821. [PMID: 37445133 DOI: 10.3390/ma16134821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
The β-type Ti-42Nb alloy has been successfully manufactured from pre-alloyed powder using the E-PBF method for the first time. This study presents thorough microstructural investigations employing diverse methodologies such as EDS, XRD, TEM, and EBSD, while mechanical properties are assessed using UPT, nanoindentation, and compression tests. Microstructural analysis reveals that Ti-42Nb alloy primarily consisted of the β phase with the presence of a small amount of nano-sized α″-martensite formed upon fast cooling. The bimodal-grained microstructure of Ti-42Nb alloy comprising epitaxially grown fine equiaxed and elongated equiaxed β-grains with an average grain size of 40 ± 28 µm exhibited a weak texture. The study shows that the obtained microstructure leads to improved mechanical properties. Young's modulus of 78.69 GPa is significantly lower than that of cp-Ti and Ti-6Al-4V alloys. The yield strength (379 MPa) and hardness (3.2 ± 0.5 GPa) also meet the criteria and closely approximate the values typical of cortical bone. UPT offers a reliable opportunity to study the nature of the ductility of the Ti-42Nb alloy by calculating its elastic constants. XPS surface analysis and electrochemical experiments demonstrate that the better corrosion resistance of the alloy in SBF is maintained by the dominant presence of TiO2 and Nb2O5. The results provide valuable insights into the development of novel low-modulus Ti-Nb alloys, which are interesting materials for additive-manufactured implants with the desired properties required for their biomedical applications.
Collapse
Affiliation(s)
- Maria Kozadaeva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, 634050 Tomsk, Russia
| | - Maria Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, 634050 Tomsk, Russia
| | - Dmitriy Khrapov
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, 634050 Tomsk, Russia
| | - Vladimir Rybakov
- International Research and Development Center "Piezo- and Magnetoelectric Materials", Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, 634050 Tomsk, Russia
| | - Roman Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, 634050 Tomsk, Russia
| | - Andrey Koptyug
- Sports Tech Research Centre, Mid Sweden University, Akademigatan 1, SE 83125 Östersund, Sweden
| | - Alina Vladescu Dragomir
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, 634050 Tomsk, Russia
- National Institute of Research and Development for Optoelectronics INOE 2000, 409 Atomistilor St., 77125 Magurele, Romania
| | - Cosmin Mihai Cotrut
- Faculty of Materials and Science Engineering, University Politehnica of Bucharest, 313, Spl. Independentei, 060042 Bucharest, Romania
| | - Alexander Tyurin
- Institute "Nanotechnology and Nanomaterials", G.R. Derzhavin Tambov State University, 33 Internationalnaya St., 392000 Tambov, Russia
| | - Irina Grubova
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, 634050 Tomsk, Russia
| |
Collapse
|
3
|
Xue R, Deng X, Xu X, Tian Y, Hasan A, Mata A, Zhang L, Liu L. Elastin-like recombinamer-mediated hierarchical mineralization coatings on Zr-16Nb-xTi (x = 4,16 wt%) alloy surfaces improve biocompatibility. BIOMATERIALS ADVANCES 2023; 151:213471. [PMID: 37201355 DOI: 10.1016/j.bioadv.2023.213471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The biocompatibility of biomedical materials is vital to their applicability and functionality. However, modifying surfaces for enhanced biocompatibility using traditional surface treatment techniques is challenging. We employed a mineralizing elastin-like recombinamer (ELR) self-assembling platform to mediate mineralization on Zr-16Nb-xTi (x = 4,16 wt%) alloy surfaces, resulting in the modification of surface morphology and bioactivity while improving the biocompatibility of the material. We modulated the level of nanocrystal organization by adjusting the cross-linker ratio. Nanoindentation tests revealed that the mineralized configuration had nonuniformity with respect to Young's modulus and hardness, with the center areas having higher values (5.626 ± 0.109 GPa and 0.264 ± 0.022 GPa) compared to the edges (4.282 ± 0.327 GPa and 0.143 ± 0.023 GPa). The Scratch test results indicated high bonding strength (2.668 ± 0.117 N) between the mineralized coating and the substrate. Mineralized Zr-16Nb-xTi (x = 4,16 wt%) alloys had higher viability compared to untreated alloys, which exhibited high cell viability (>100 %) after 5 days and high alkaline phosphatase activity after 7 days. Cell proliferation assays indicated that MG 63 cells grew faster on mineralized surfaces than on untreated surfaces. Scanning electron microscopy imaging confirmed that the cells adhered and spread well on mineralized surfaces. Furthermore, hemocompatibility test results revealed that all mineralized samples were non-hemolytic. Our results demonstrate the viability of employing the ELR mineralizing platform to improve alloy biocompatibility.
Collapse
Affiliation(s)
- Renhao Xue
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Xinru Deng
- School of Engineering and Materials Science, Queen Mary University of London, London E14NS, UK
| | - Xiaoning Xu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Yueyan Tian
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Abshar Hasan
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alvaro Mata
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Department of Chemical & Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ligang Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
| | - Libin Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
| |
Collapse
|
4
|
Xu M, Yu X, Zhang S, Yan S, Tarbokov V, Remnev G, Le X. Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16083028. [PMID: 37109863 PMCID: PMC10146960 DOI: 10.3390/ma16083028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023]
Abstract
The unique flash heating characteristics of intense pulsed ion beams (IPIB) offer potential advantages to fabricate high-performance coatings with non-equilibrium structures. In this study, titanium-chromium (Ti-Cr) alloy coatings are prepared through magnetron sputtering and successive IPIB irradiation, and the feasibility of IPIB melt mixing (IPIBMM) for a film-substrate system is verified via finite elements analysis. The experimental results reveal that the melting depth is 1.15 μm under IPIB irradiation, which is in close agreement with the calculation value (1.18 μm). The film and substrate form a Ti-Cr alloy coating by IPIBMM. The coating has a continuous gradient composition distribution, metallurgically bonding on the Ti substrate via IPIBMM. Increasing the IPIB pulse number leads to more complete element mixing and the elimination of surface cracks and craters. Additionally, the IPIB irradiation induces the formation of supersaturated solid solutions, lattice transition, and preferred orientation change, contributing to an increase in hardness and a decrease in elastic modulus with continuous irradiation. Notably, the coating treated with 20 pulses demonstrates a remarkable hardness (4.8 GPa), more than twice that of pure Ti, and a lower elastic modulus (100.3 GPa), 20% less than that of pure Ti. The analysis of the load-displacement curves and H-E ratios indicates that the Ti-Cr alloy coated samples exhibit better plasticity and wear resistance compared to pure Ti. Specifically, the coating formed after 20 pulses exhibits exceptional wear resistance, as demonstrated by its H3/E2 value being 14 times higher than that of pure Ti. This development provides an efficient and eco-friendly method for designing robust-adhesion coatings with specific structures, which can be extended to various bi- or multi-element material systems.
Collapse
Affiliation(s)
- Mofei Xu
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engneering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Xiang Yu
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engneering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Shijian Zhang
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engneering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Sha Yan
- Institute of Heavy Ion Physics, Peking University, Beijing 100871, China
| | - Vladislav Tarbokov
- School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Gennady Remnev
- School of Physics, Beihang University, Beijing 100191, China
- School of Advanced Manufacturing Technologies, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Xiaoyun Le
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engneering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
GO-based antibacterial composites: Application and design strategies. Adv Drug Deliv Rev 2021; 178:113967. [PMID: 34509575 DOI: 10.1016/j.addr.2021.113967] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO), for its unique structure with high biocompatibility and designability, is widely used in the antibacterial field. Various strategies have been designed to fabricate GO-based composites with antibacterial properties. This review summarized these strategies, divided them into three types and interpreted their antibacterial mechanisms: (i) "GO*/non-GO" type in which GO acts as the single antibacterial core, (ii) "GO*/non-GO*" type in which GO and non-GO components function synergistically as dual antibacterial cores, (iii) "GO/non-GO*" type in which non-GO acts as the single antibacterial core, while GO component plays a supportive, not a dominant role in antibiosis. Besides, the fields suiting their applications and factors influencing their antibacterial properties were analyzed. Finally, the limitations and prospects in the current researches were discussed. In summary, GO-based composites have revolutionized antibacterial strategies. This review may serve as a reference to inspire further research on GO-based antibacterial composites.
Collapse
|
6
|
Liu Z, Xiao K, Hou Z, Yan F, Chen Y, Cai L. Multifunctional Coating with Both Thermal Insulation and Antibacterial Properties Applied to Nickel-Titanium Alloy. Int J Nanomedicine 2020; 15:7215-7234. [PMID: 33061377 PMCID: PMC7532895 DOI: 10.2147/ijn.s266247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/25/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND With excellent shape memory and superelastic properties, shape memory alloy (SMA) is an ideal actuator, and it can form smart structure for different applications in medical field. However, SMA devices cause apparent thermal damage to the surrounding tissues when it works in vivo, making the application of smart structure that is composed of SMA actuator in vivo is greatly limited. METHODS In this paper, coating (APA) with PLA as the main body to limit the heat conduction, a multifunctional Ag nanoparticles (AgNPs)/polylactic acid (PLA)/Al2O3 was synthesized. The Al2O3 layer was formed by micro-arc oxidation (MAO) and AgNPs were synthesized by silver nitrate and ethylene glycol. Scanning electron microscopy, transmission electron microscope, and Fourier transform infrared spectra were applied to analyze the morphology and characterization of APA coating. The antimicrobial activity, thermal insulation activity, and biocompatibility of APA coating were furtherly explored and verified through animal experiments and immunohistochemistry. RESULTS With different particle sizes and concentrations of AgNPs, APA multi-functional films were successfully prepared. The Al2O3 layer was closely combined with SMA and formed a porous surface, so the PLA and AgNPs layers can firmly adhere to SMA, thus reducing the release of nickel ions in SMA. AgNPs gave APA coating excellent antibacterial activity and effectively inhibited the growth of Staphylococcus aureus. In addition, coupled with the low thermal conductivity of PLA and Al2O3, AgNPs were tightly anchored on the surface of PLA, which has high infrared reflectivity, making the APA coating obtain good thermal insulation performance. CONCLUSION We have successfully prepared the APA coating and obtained the optimum amount of AgNPs, which makes it have good thermal insulation performance, good antibacterial activity and good biocompatibility, which provides a new prospect for the application of SMA.
Collapse
Affiliation(s)
- ZhiBo Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei430071, People’s Republic of China
| | - KangWen Xiao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei430071, People’s Republic of China
| | - ZhiQiang Hou
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei430071, People’s Republic of China
| | - FeiFei Yan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei430071, People’s Republic of China
| | - Yan Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei430071, People’s Republic of China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei430071, People’s Republic of China
| |
Collapse
|
7
|
Soleymani Eil Bakhtiari S, Bakhsheshi-Rad HR, Karbasi S, Tavakoli M, Razzaghi M, Ismail AF, RamaKrishna S, Berto F. Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers (Basel) 2020; 12:polym12071469. [PMID: 32629907 PMCID: PMC7407371 DOI: 10.3390/polym12071469] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Every year, millions of people in the world get bone diseases and need orthopedic surgery as one of the most important treatments. Owing to their superior properties, such as acceptable biocompatibility and providing great primary bone fixation with the implant, polymethyl methacrylate (PMMA)-based bone cements (BCs) are among the essential materials as fixation implants in different orthopedic and trauma surgeries. On the other hand, these BCs have some disadvantages, including Lack of bone formation and bioactivity, and low mechanical properties, which can lead to bone cement (BC) failure. Hence, plenty of studies have been concentrating on eliminating BC failures by using different kinds of ceramics and polymers for reinforcement and also by producing composite materials. This review article aims to evaluate mechanical properties, self-setting characteristics, biocompatibility, and bioactivity of the PMMA-based BCs composites containing carbon nanotubes (CNTs), graphene oxide (GO), and carbon-based compounds. In the present study, we compared the effects of CNTs and GO as reinforcement agents in the PMMA-based BCs. Upcoming study on the PMMA-based BCs should concentrate on trialing combinations of these carbon-based reinforcing agents as this might improve beneficial characteristics.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (S.S.E.B.); (M.R.)
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (S.S.E.B.); (M.R.)
- Correspondence: or (H.R.B.-R.); (F.B.)
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologes in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mahmood Razzaghi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran; (S.S.E.B.); (M.R.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor 81310, Malaysia;
| | - Seeram RamaKrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Correspondence: or (H.R.B.-R.); (F.B.)
| |
Collapse
|
8
|
Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Acta Biomater 2019; 98:196-214. [PMID: 31154057 DOI: 10.1016/j.actbio.2019.05.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
A Zinc-loaded montmorillonite (Zn-MMT) coating was hydrothermally prepared using Zn2+ ion intercalated sodium montmorillonite (Na-MMT) upon magnesium (Mg) alloy AZ31 as bone repairing materials. Biodegradation rate of the Mg-based materials was studied via potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and hydrogen evolution tests. Results revealed that both Na-MMT and Zn-MMT coatings exhibited better corrosion resistance in Dulbecco's modified eagle medium (DMEM) + 10% calf serum (CS) than bare Mg alloy AZ31 counterparts. Hemolysis results demonstrated that hemocompatibility of the Na-MMT and Zn-MMT coatings were 5%, and lower than that of uncoated Mg alloy AZ31 pieces. In vitro MTT tests and live-dead stain of osteoblast cells (MC3T3-E1) indicated a significant improvement in cytocompatibility of both Na-MMT and Zn-MMT coatings. Antibacterial properties of two representative bacterial strains associated with device-related infection, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), were employed to explore the antibacterial behavior of the coatings. The measured inhibitory zone and bacterial growth rate confirmed that Zn-MMT coatings exhibited higher suppression toward both E. coli and S. aureus than that of Na-MMT coatings. The investigation on antibacterial mechanism through scanning electron microscopy (SEM) and lactate dehydrogenase (LDH) release assay manifested that Zn-MMT coating led to severe breakage of bacterial membrane of E. coli and S. aureus, which resulted in a release of cytoplasmic materials from the bacterial cells. In addition, the good inhibition of Zn-MMT coatings against E. coli and S. aureus might be attributed to the slow but sustainable release of Zn2+ ions (up to 144 h) from the coatings into the culture media. This study provides a novel coating strategy for manufacturing biodegradable Mg alloys with good corrosion resistance, biocompatibility and antibacterial activity for future orthopedic applications. STATEMENT OF SIGNIFICANCE: The significance of the current work is to develop a corrosion-resistant and antibacterial Zn-MMT coating on magnesium alloy AZ31 through a hydrothermal method. The Zn-MMT coating on magnesium alloy AZ31 shows better corrosion resistance, biocompatibility and excellent antibacterial ability than magnesium alloy AZ31. This study provides a novel coating on Mg alloys for future orthopedic applications.
Collapse
|
9
|
Li Z, Goh TW, Yam GHF, Thompson BC, Hu H, Setiawan M, Sun W, Riau AK, Tan DT, Khor KA, Mehta JS. A sintered graphene/titania material as a synthetic keratoprosthesis skirt for end-stage corneal disorders. Acta Biomater 2019; 94:585-596. [PMID: 31129362 DOI: 10.1016/j.actbio.2019.05.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/21/2023]
Abstract
An artificial cornea or keratoprosthesis requires high mechanical strength, good biocompatibility, and sufficient wear and corrosion resistance to withstand the hostile environment. We report a reduced graphene oxide-reinforced titania-based composite for this application. Graphene oxide nanoparticles (GO) and liquid crystalline graphene oxide (LCGO) were the graphene precursors and mixed with titanium dioxide (TiO2) powder. The composites reinforced with reduced GO or LCGO were produced through spark plasma sintering (SPS). The mechanical properties (Young's modulus and hardness), wear behaviour and corrosion resistance were studied using nanoindentation, anoidic polarization, long-term corrosion assay in artificial tear fluid and tribology assay in corroboration with atomic force microscopy and scanning electron microscopy. Biocompatibility was assessed by human corneal stromal cell attachment, survival and proliferation, and DNA damages. Sintered composites were implanted into rabbit corneas to assess for in vivo stability and host tissue responses. We showed that reduced graphene/TiO2 hybrids were safe and biocompatible. In particular, the 1% reduced LCGO/TiO2 (1rLCGO/TiO2) composite was mechanically strong, chemically stable, and showed better wear and corrosion resistance than pure titania and other combinations of graphene-reinforced titania. Hence the 1rLCGO/ TiO2 bioceramics can be a potential skirt biomaterial for keratoprosthesis to treat end-stage corneal blindness. STATEMENT OF SIGNIFICANCE: The osteo-odonto-keratoprosthesis (OOKP) is an artificial cornea procedure used to restore vision in end-stage corneal diseases, however it is contraindicated in young subjects, patients with advanced imflammatory diseases and posterior segment complications. Hence, there is a need of an improved keratoprosthesisskirt material with high mechanical and chemical stability, wear resistance and tissue integration ability. Our study characterized a reduced graphene oxide-reinforced titania-based biomaterial, which demonstrated strong mechanical strength, wear and corrosion resistance, and was safe and biocompatible to human corneal stromal cells. In vivo implantation to rabbit corneas did not cause any immune and inflammation outcomes. In conclusion, this invention is a potential keratoprosthesis skirt biomaterial to withstand the hostile environment in treating end-stage corneal blindness.
Collapse
|
10
|
Corrosion Behavior and Conductivity of TiNb and TiNbN Coated Steel for Metallic Bipolar Plates. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122568] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To improve corrosion resistance and electronic conductivity of bipolar plates for proton exchange membrane fuel cell (PEMFC), coatings of TiNb and TiNbN on 316L stainless steel (SS) were prepared by magnetron sputtering. X-ray diffraction (XRD) measurements confirmed the existence of metallic nitrides in the TiNbN coating. Scanning electron microscope (SEM) tests showed that the deposited coatings provided smooth surfaces. Further electrochemical measurements indicated that the corrosion resistance of TiNb coating was significantly higher than that of substrate. At 0.19 V vs MSE, the long-term stabilized current density of TiNb/316L SS was lower than 1 μA·cm−2. The interfacial contact resistance (ICR) values between coating and carbon paper suggested that TiNb and TiNbN films had better contact conductivity than 316L SS substrate. In conclusion, TiNb coated 316L SS metallic bipolar plate material is a promising option for PEMFC.
Collapse
|
11
|
Wu J, Li H, Yuan B, Gao Y. High recoverable strain tailoring by Zr adjustment of sintered Ti-13Nb-(0-6)Zr biomedical alloys. J Mech Behav Biomed Mater 2017; 75:574-580. [DOI: 10.1016/j.jmbbm.2017.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 04/24/2017] [Accepted: 05/18/2017] [Indexed: 01/20/2023]
|
12
|
Hamidi MFFA, Harun WSW, Samykano M, Ghani SAC, Ghazalli Z, Ahmad F, Sulong AB. A review of biocompatible metal injection moulding process parameters for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1263-1276. [PMID: 28575965 DOI: 10.1016/j.msec.2017.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 01/07/2023]
Abstract
Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development.
Collapse
Affiliation(s)
- M F F A Hamidi
- Institute of Postgraduate Studies, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - W S W Harun
- Green Research for Advanced Materials Laboratory, Human Engineering Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia.
| | - M Samykano
- Structural and Material Degradation Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
| | - S A C Ghani
- Green Research for Advanced Materials Laboratory, Human Engineering Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
| | - Z Ghazalli
- Green Research for Advanced Materials Laboratory, Human Engineering Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
| | - F Ahmad
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Malaysia
| | - A B Sulong
- Department of Mechanical & Materials Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Malaysia
| |
Collapse
|
13
|
|
14
|
Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E, Cho MH. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:215-219. [PMID: 28183601 DOI: 10.1016/j.msec.2016.11.138] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 10/07/2016] [Accepted: 11/29/2016] [Indexed: 11/17/2022]
Abstract
In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg2(Zn, Al)11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mg<Zn-0.5Al-0.3Mg<Zn-0.5Al-0.1Mg<Zn-0.5Al. The cytotoxicity tests exhibited that the Zn-0.5Al-0.5Mg alloy presents higher viability of MC3T3-E1 cell compared to the Zn-0.5Al alloy, which suggested good biocompatibility. The antibacterial activity result of both Zn-0.5Al and Zn-0.5Al-Mg alloys against Escherichia coli presented some antibacterial activity, while the Zn-0.5Al-0.5Mg significantly prohibited the growth of Escherichia coli. Thus, Zn-0.5Al-0.5Mg alloy with appropriate mechanical properties, low corrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material.
Collapse
Affiliation(s)
- H R Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - E Hamzah
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - H T Low
- Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - M Kasiri-Asgarani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - S Farahany
- Department of Materials and Mechanical Engineering, Buein Zahra Technical University, Qazvin 3451745346, Iran
| | - E Akbari
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - M H Cho
- KISWIRE Sdn. Bhd, Research and Development Centre, Johor, Malaysia
| |
Collapse
|