1
|
Tupally KR, Seal P, Pandey P, Lohman R, Smith S, Ouyang D, Parekh H. Integration of Dendrimer‐Based Delivery Technologies with Computational Pharmaceutics and Their Potential in the Era of Nanomedicine. EXPLORING COMPUTATIONAL PHARMACEUTICS ‐ AI AND MODELING IN PHARMA 4.0 2024:328-378. [DOI: 10.1002/9781119987260.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Cholujova D, Bujnakova ZL, Dutkova E, Valuskova Z, Csicsatkova N, Suroviakova K, Marinkovicova ME, Zbellova L, Koklesova L, Sedlak J, Hideshima T, Anderson KC, Jakubikova J. Exploring the anti-myeloma potential of composite nanoparticles As 4S 4/Fe 3O 4: Insights from in vitro, ex vivo and in vivo studies. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102777. [PMID: 39111377 DOI: 10.1016/j.nano.2024.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024]
Abstract
Given the profound multiple myeloma (MM) heterogeneity in clonal proliferation of malignant plasma cells (PCs) and anti-MM therapeutic potential of nanotherapies, it is inevitable to develop treatment plan for patients with MM. Two composite nanoparticles (NPs), As4S4/Fe3O4 (4:1) and As4S4/Fe3O4 (1:1) demonstrated effective anti-MM activity in in vitro, ex vivo, and in vivo in xenograft mouse model. Composite NPs triggered activation of p-ERK1/2/p-JNK, and downregulation of c-Myc, p-PI3K, p-4E-BP1; G2/M cell cycle arrest with increase in cyclin B1, histones H2AX/H3, activation of p-ATR, p-Chk1/p-Chk2, p-H2AX/p-H3; and caspase- and mitochondria-dependent apoptosis induction. NPs attenuated the stem cell-like side population in MM cells, both alone and in the presence of stroma. For a higher clinical response rate, As4S4/Fe3O4 (4:1) observed synergism with dexamethasone and melphalan, while As4S4/Fe3O4 (1:1) showed synergistic effects in combination with bortezomib, lenalidomide and pomalidomide anti-MM agents, providing the framework for further clinical evaluation of composite NPs in MM.
Collapse
Affiliation(s)
- Danka Cholujova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Zdenka Lukacova Bujnakova
- Institute of Geotechnics, Department of Mechanochemistry, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Erika Dutkova
- Institute of Geotechnics, Department of Mechanochemistry, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
| | - Zuzana Valuskova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Nikoleta Csicsatkova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Katarina Suroviakova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Maria Elisabeth Marinkovicova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Linda Zbellova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Lenka Koklesova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jan Sedlak
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Teru Hideshima
- Dana Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth C Anderson
- Dana Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jana Jakubikova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, v. v. i., Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia.
| |
Collapse
|
3
|
Ren E, Ren W, Collins AC, Robinson A, Vaidya R. Chemotherapy Release From Bortezomib-Impregnated Polymethylmethacrylate-Coated Intramedullary Nails: A Novel In Vitro Study for a Local Chemotherapy Delivery Device. Cureus 2024; 16:e64181. [PMID: 39119424 PMCID: PMC11309748 DOI: 10.7759/cureus.64181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Bortezomib (BAN) is a proteasome inhibitor approved for the treatment of multiple myeloma and lymphoma. Despite its efficacy in various tumor models, systemic administration can result in toxicity to healthy organs. The purpose of this study is to evaluate the elution profile of BAN from PMMA cement for the local treatment of orthopedic tumors. BAN solution (5 mg; 2 mg/mL) was mixed with Simplex cement (40 g, Stryker), followed by injection of cement into an antibiotic cement nail mold (13 mm) to coat a 10 mm titanium femoral nail (DePuy Synthes). Once the cement polymerized, the nail was cut into 2 cm segments for the BAN elution study. There is a sustained release of BAN for up to 28 days. The overall concentration of BAN released at each time point was between 74 and 263 ng/ml, which is compatible with the peak blood concentration of a single intravenous BAN injection. This study demonstrates the feasibility of using PMMA bone cement as a local BAN delivery tool, essential for future studies and treatment targeting multiple myeloma cells.
Collapse
Affiliation(s)
- Emily Ren
- Department of Orthopaedic Surgery, Wayne State University Detroit Medical Center, Detroit, USA
| | - Weiping Ren
- Department of Biomedical Engineering, Wayne State University, Detroit, USA
| | - Angela C Collins
- Department of Orthopaedic Surgery, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Andrew Robinson
- Department of Orthopaedic Surgery, Wayne State University Detroit Medical Center, Detroit, USA
| | - Rahul Vaidya
- Department of Orthopaedic Surgery, Wayne State University Detroit Medical Center, Detroit, USA
| |
Collapse
|
4
|
Low-intensity focused ultrasound-assisted dox-piperine amplified therapy on anaplastic thyroid carcinoma by hybird tumor-targeting nanoparticles. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Yang P, Qu Y, Wang M, Chu B, Chen W, Zheng Y, Niu T, Qian Z. Pathogenesis and treatment of multiple myeloma. MedComm (Beijing) 2022; 3:e146. [PMID: 35665368 PMCID: PMC9162151 DOI: 10.1002/mco2.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is the second‐ranking malignancy in hematological tumors. The pathogenesis of MM is complex with high heterogeneity, and the development of the disease is a multistep process. Chromosomal translocations, aneuploidy, genetic mutations, and epigenetic aberrations are essential in disease initiation and progression. The correlation between MM cells and the bone marrow microenvironment is associated with the survival, progression, migration, and drug resistance of MM cells. In recent decades, there has been a significant change in the paradigm for the management of MM. With the development of proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, chimeric antigen receptor T‐cell therapies, and novel agents, the survival of MM patients has been significantly improved. In addition, nanotechnology acts as both a nanocarrier and a treatment tool for MM. The properties and responsive conditions of nanomedicine can be tailored to reach different goals. Nanomedicine with a precise targeting property has offered great potential for drug delivery and assisted in tumor immunotherapy. In this review, we summarize the pathogenesis and current treatment options of MM, then overview recent advances in nanomedicine‐based systems, aiming to provide more insights into the treatment of MM.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Ying Qu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Mengyao Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Bingyang Chu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Wen Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Yuhuan Zheng
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhiyong Qian
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
6
|
Allahyari S, Valizadeh H, Zakeri-Milani P. Polymeric Nanoparticles and Their Novel Modifications for Targeted Delivery of Bortezomib. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bortezomib (BTZ) as a specific proteasome inhibitor is used to inhibit proliferation and migration of tumor cell in variety of cancers. Targeted delivery of this drug not only would minimize its unwanted side effects but also might improve its efficacy. This purpose could be gotten through different pathways but using efficient carriers may be the best one without using any additional ingredients/ materials. Some polymer based nanoparticles with specific functional groups have the ability to interact with boronic acid moiety in BTZ. This reaction might play an important role not only in cancer targeting therapy but also in loading and release properties of this drug. Novel modification such as making multifunctional or pH-sensitive nanocarriers, may also improve anticancer effect of BTZ. This review might have remarkable effect on researchers’ consideration about other possible interactions between BTZ and polymeric nanocarriers that might have great effect on its remedy pathway. It has the ability to brought bright ideas to their minds for novel amendments about other drugs and delivery systems.
Collapse
Affiliation(s)
- Saeideh Allahyari
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Santos A, Veiga F, Figueiras A. Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E65. [PMID: 31877717 PMCID: PMC6981751 DOI: 10.3390/ma13010065] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
The European Medicines Agency (EMA) and the Current Good Manufacturing Practices (cGMP) in the United States of America, define excipient as the constituents of the pharmaceutical form other than the active ingredient, i.e., any component that is intended to furnish pharmacological activity. Although dendrimers do not have a pharmacopoeia monograph and, therefore, cannot be recognized as a pharmaceutical excipient, these nanostructures have received enormous attention from researchers. Due to their unique properties, like the nanoscale uniform size, a high degree of branching, polyvalency, aqueous solubility, internal cavities, and biocompatibility, dendrimers are ideal as active excipients, enhancing the solubility of poorly water-soluble drugs. The fact that the dendrimer's properties are controllable during their synthesis render them promising agents for drug-delivery applications in several pharmaceutical formulations. Additionally, dendrimers can be used for reducing the drug toxicity and for the enhancement of the drug efficacy. This review aims to discuss the properties that turn dendrimers into pharmaceutical excipients and their potential applications in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Ana Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (A.S.); (F.V.)
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (A.S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Ana Figueiras
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (A.S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
8
|
All-atomistic molecular dynamics (AA-MD) studies and pharmacokinetic performance of PAMAM-dendrimer-furosemide delivery systems. Int J Pharm 2018; 547:545-555. [DOI: 10.1016/j.ijpharm.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022]
|
9
|
Abstract
Among the six Critical Nanoscale Design Parameters (CNDPs) proposed by Prof. Donald A. Tomalia, this review illustrates the influence of the sixth one, which concerns the elemental composition, on the properties of dendrimers. After a large introduction that summarizes different types of dendrimers that have been compared with PolyAMidoAMine (PAMAM) dendrimers, this review will focus on the properties of positively and negatively charged phosphorhydrazone (PPH) dendrimers, especially in the field of biology, compared with other types of dendrimers, in particular PAMAM dendrimers, as well as polypropyleneimine (PPI), carbosilane, and p-Lysine dendrimers.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse CEDEX 4, France.
| | - Jean-Pierre Majoral
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse CEDEX 4, France.
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse CEDEX 4, France.
| |
Collapse
|