1
|
Govindaraju DT, Kao HH, Chien YM, Chen JP. Composite Polycaprolactone/Gelatin Nanofiber Membrane Scaffolds for Mesothelial Cell Culture and Delivery in Mesothelium Repair. Int J Mol Sci 2024; 25:9803. [PMID: 39337295 PMCID: PMC11432067 DOI: 10.3390/ijms25189803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
To repair damaged mesothelium tissue, which lines internal organs and cavities, a tissue engineering approach with mesothelial cells seeded to a functional nanostructured scaffold is a promising approach. Therefore, this study explored the uses of electrospun nanofiber membrane scaffolds (NMSs) as scaffolds for mesothelial cell culture and transplantation. We fabricated a composite NMS through electrospinning by blending polycaprolactone (PCL) with gelatin. The addition of gelatin enhanced the membrane's hydrophilicity while maintaining its mechanical strength and promoted cell attachment. The in vitro study demonstrated enhanced adhesion of mesothelial cells to the scaffold with improved morphology and increased phenotypic expression of key marker proteins calretinin and E-cadherin in PCL/gelatin compared to pure PCL NMSs. In vivo studies in rats revealed that only cell-seeded PCL/gelatin NMS constructs fostered mesothelial healing. Implantation of these constructs leads to the regeneration of new mesothelium tissue. The neo-mesothelium is similar to native mesothelium from hematoxylin and eosin (H&E) and immunohistochemical staining. Taken together, the PCL/gelatin NMSs can be a promising scaffold for mesothelial cell attachment, proliferation, and differentiation, and the cell/scaffold construct can be used in therapeutic applications to reconstruct a mesothelium layer.
Collapse
Affiliation(s)
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yen-Miao Chien
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
2
|
Shah D, Dave B, Chorawala MR, Prajapati BG, Singh S, M. Elossaily G, Ansari MN, Ali N. An Insight on Microfluidic Organ-on-a-Chip Models for PM 2.5-Induced Pulmonary Complications. ACS OMEGA 2024; 9:13534-13555. [PMID: 38559954 PMCID: PMC10976395 DOI: 10.1021/acsomega.3c10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 μm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.
Collapse
Affiliation(s)
- Disha Shah
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhavarth Dave
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Mehul R. Chorawala
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhupendra G. Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research,
Ganpat University, Mehsana, Gujarat 384012, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Ramadi KB, McRae JC, Selsing G, Su A, Fernandes R, Hickling M, Rios B, Babaee S, Min S, Gwynne D, Jia NXJ, Aragon A, Ishida K, Kuosmanen J, Jenkins J, Hayward A, Kamrin K, Traverso G. Bioinspired, ingestible electroceutical capsules for hunger-regulating hormone modulation. Sci Robot 2023; 8:eade9676. [PMID: 37099636 PMCID: PMC10508349 DOI: 10.1126/scirobotics.ade9676] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023]
Abstract
The gut-brain axis, which is mediated via enteric and central neurohormonal signaling, is known to regulate a broad set of physiological functions from feeding to emotional behavior. Various pharmaceuticals and surgical interventions, such as motility agents and bariatric surgery, are used to modulate this axis. Such approaches, however, are associated with off-target effects or post-procedure recovery time and expose patients to substantial risks. Electrical stimulation has also been used to attempt to modulate the gut-brain axis with greater spatial and temporal resolution. Electrical stimulation of the gastrointestinal (GI) tract, however, has generally required invasive intervention for electrode placement on serosal tissue. Stimulating mucosal tissue remains challenging because of the presence of gastric and intestinal fluid, which can influence the effectiveness of local luminal stimulation. Here, we report the development of a bioinspired ingestible fluid-wicking capsule for active stimulation and hormone modulation (FLASH) capable of rapidly wicking fluid and locally stimulating mucosal tissue, resulting in systemic modulation of an orexigenic GI hormone. Drawing inspiration from Moloch horridus, the "thorny devil" lizard with water-wicking skin, we developed a capsule surface capable of displacing fluid. We characterized the stimulation parameters for modulation of various GI hormones in a porcine model and applied these parameters to an ingestible capsule system. FLASH can be orally administered to modulate GI hormones and is safely excreted with no adverse effects in porcine models. We anticipate that this device could be used to treat metabolic, GI, and neuropsychiatric disorders noninvasively with minimal off-target effects.
Collapse
Affiliation(s)
- Khalil B Ramadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | - James C McRae
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George Selsing
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arnold Su
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rafael Fernandes
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maela Hickling
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brandon Rios
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sahab Babaee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seokkee Min
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Declan Gwynne
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil Xi-Juna Jia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aleyah Aragon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Keiko Ishida
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Johannes Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Josh Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alison Hayward
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ken Kamrin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Zhang K, Wang Y, Sun T, Wang B, Zhang H. Bioinspired Surface Functionalization for Improving Osteogenesis of Electrospun Polycaprolactone Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15544-15550. [PMID: 30418771 DOI: 10.1021/acs.langmuir.8b03357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrospun nanofibers, with a typical interconnected porous structure mimicking the extracellular matrix, are commonly used in bone tissue engineering. However, to the best of our knowledge, few studies have been reported to investigate the enhancement of osteogenesis capability of electrospun polycaprolactone (PCL) nanofibers based on bioinspired surface functionalization. In this study, a universal and versatile approach was proposed to spontaneously modify the electrospun PCL nanofibers with bioactive nano-hydroxyapatite (nHA), using dopamine as an effective bioadhesive agent. The evaluation of scanning electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and surface wettability indicated that nHA was successfully coated onto electrospun nanofibers (PCL-PDHA). Furthermore, in vitro cell experiment including adhesion, proliferation, and osteogenic capability and in vitro biomineralization test in simulated body fluid revealed that the PCL-PDHA nanofibers were biocompatible to MC3T3-E1 cells, and the osteogenesis and biomineralization capabilities were greatly improved in comparison with that of PCL nanofibers. In summary, the facile bioinspired surface functionalization method introduced in the present study, due to its universality and versatility, not only can be used to improve osteogenesis of electrospun nanofibers but also can be regarded as an avenue to achieve other predesigned purposes in biomedical engineering.
Collapse
Affiliation(s)
- Kuan Zhang
- Institute of Chemical Engineering, College of Materials and Chemical Engineering , Hainan University , Haikou 570228 , China
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yi Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Tao Sun
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| | - Bo Wang
- Institute of Chemical Engineering, College of Materials and Chemical Engineering , Hainan University , Haikou 570228 , China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|