1
|
Zhao M, Yang D, Fan S, Yao X, Wang J, Zhu M, Zhang Y. 3D-Printed Strong Dental Crown with Multi-Scale Ordered Architecture, High-Precision, and Bioactivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104001. [PMID: 34936228 PMCID: PMC8844577 DOI: 10.1002/advs.202104001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Indexed: 05/02/2023]
Abstract
Mimicking the multi-scale highly ordered hydroxyapatite (HAp) nanocrystal structure of the natural tooth enamel remains a great challenge. Herein, a bottom-up step-by-step strategy is developed using extrusion-based 3D printing technology to achieve a high-precision dental crown with multi-scale highly ordered HAp structure. In this study, hybrid resin-based composites (RBCs) with "supergravity +" HAp nanorods can be printed smoothly via direct ink writing (DIW) 3D printing, induced by shear force through a custom-built nozzle with a gradually shrinking channel. The theoretical simulation results of finite element method are consistent with the experimental results. The HAp nanorods are first highly oriented along a programmable printing direction in a single printed fiber, then arranged in a layer by adjusting the printing path, and finally 3D printed into a highly ordered and complex crown structure. The printed samples with criss-crossed layers by interrupting crack propagation exhibit a flexural strength of 134.1 ± 3.9 MPa and a compressive strength of 361.6 ± 8.9 MPa, which are superior to the corresponding values of traditional molding counterparts. The HAp-monodispersed RBCs are successfully used to print strong and bioactive dental crowns with a printing accuracy of 95%. This new approach can help provide customized components for the clinical restoration of teeth.
Collapse
Affiliation(s)
- Menglu Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Danlei Yang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Jiexin Wang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsShanghai Belt and Road Joint Laboratory of Advanced Fiber and Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
2
|
Zhang A, Ye N, Aregawi W, Zhang L, Salah M, VanHeel B, Chew HP, Fok ASL. A Review of Mechano-Biochemical Models for Testing Composite Restorations. J Dent Res 2021; 100:1030-1038. [PMID: 34365857 DOI: 10.1177/00220345211026918] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to the severe mechano-biochemical conditions in the oral cavity, many dental restorations will degrade and eventually fail. For teeth restored with resin composite, the major modes of failure are secondary caries and fracture of the tooth or restoration. While clinical studies can answer some of the more practical questions, such as the rate of failure, fundamental understanding on the failure mechanism can be obtained from laboratory studies using simplified models more effectively. Reviewed in this article are the 4 main types of models used to study the degradation of resin-composite restorations, namely, animal, human in vivo or in situ, in vitro biofilm, and in vitro chemical models. The characteristics, advantages, and disadvantages of these models are discussed and compared. The tooth-restoration interface is widely considered the weakest link in a resin composite restoration. To account for the different types of degradation that can occur (i.e., demineralization, resin hydrolysis, and collagen degradation), enzymes such as esterase and collagenase found in the oral environment are used, in addition to acids, to form biochemical models to test resin-composite restorations in conjunction with mechanical loading. Furthermore, laboratory tests are usually performed in an accelerated manner to save time. It is argued that, for an accelerated multicomponent model to be representative and predictive in terms of both the mode and the speed of degradation, the individual components must be synchronized in their rates of action and be calibrated with clinical data. The process of calibrating the in vitro models against clinical data is briefly described. To achieve representative and predictive in vitro models, more comparative studies of in vivo and in vitro models are required to calibrate the laboratory studies.
Collapse
Affiliation(s)
- A Zhang
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - N Ye
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - W Aregawi
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - L Zhang
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - M Salah
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.,Faculty of Dentistry, Ain-Shams University, Cairo, Egypt
| | - B VanHeel
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - H P Chew
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - A S L Fok
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Radiopacity and mechanical properties of dental adhesives with strontium hydroxyapatite nanofillers. J Mech Behav Biomed Mater 2020; 101:103447. [DOI: 10.1016/j.jmbbm.2019.103447] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023]
|
4
|
Gutiérrez MF, Bermudez J, Dávila-Sánchez A, Alegría-Acevedo LF, Méndez-Bauer L, Hernández M, Astorga J, Reis A, Loguercio AD, Farago PV, Fernández E. Zinc oxide and copper nanoparticles addition in universal adhesive systems improve interface stability on caries-affected dentin. J Mech Behav Biomed Mater 2019; 100:103366. [PMID: 31422314 DOI: 10.1016/j.jmbbm.2019.07.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Accepted: 07/20/2019] [Indexed: 11/25/2022]
Abstract
This study evaluated the MMP inhibition of the zinc oxide and copper nanoparticles (ZnO/CuNp), and the effects of their addition into adhesives on antimicrobial activity (AMA), ultimate tensile strength (UTS), in vitro degree of conversion (in vitro-DC), as well as, resin-dentin bond strength (μTBS), nanoleakage (NL) and in situ-DC on caries-affected dentin. Anti-MMP activity was evaluated for several MMPs. ZnO/CuNp (0% [control]; 5/0.1 and 5/0.2 wt%) were added into Prime&Bond Active (PBA) and Ambar Universal (AMB). The AMA was evaluated against Streptococcus mutans. UTS were tested after 24 h and 28d. After induced caries, adhesives and composite were applied to flat dentin surfaces, and specimens were sectioned to obtain resin-dentin sticks. μTBS, NL, in vitro-DC and in situ-DC were evaluated after 24 h. ANOVA and Tukey's test were applied (α = 0.05). ZnO/CuNp demonstrated anti-MMP activity (p < 0.05). The addition of ZnO/CuNp increased AMA and UTS (AMB; p < 0.05). UTS for PBA, in vitro-DC, in situ-DC and μTBS for both adhesives were maintained with ZnO/CuNp (p > 0.05). However, lower NL was observed for ZnO/CuNp groups (p < 0.05). The addition of ZnO/CuNp in adhesives may be an alternative to provide antimicrobial, anti-MMP activities and improves the integrity of the hybrid layer on caries-affected dentin.
Collapse
Affiliation(s)
- Mario Felipe Gutiérrez
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil; Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile; Facultad de Odontología, Universidad Finis Terrae, Chile
| | - Jorge Bermudez
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Andrés Dávila-Sánchez
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil; Department of Restorative Dentistry and Biomaterials, San Francisco de Quito University, Quito, Ecuador
| | - Luisa F Alegría-Acevedo
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil; Universidad Politécnica y Artística del Paraguay, Paraguay
| | - Luján Méndez-Bauer
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Marcela Hernández
- Department of Oral Pathology and Medicine and Laboratory of Periodontal Biology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jessica Astorga
- Department of Oral Pathology and Medicine and Laboratory of Periodontal Biology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Alessandra Reis
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Alessandro D Loguercio
- Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil.
| | - Paulo V Farago
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Eduardo Fernández
- Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Chile; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
5
|
Trevelin LT, Villanueva J, Zamperini CA, Mathew MT, Matos AB, Bedran-Russo AK. Investigation of five α-hydroxy acids for enamel and dentin etching: Demineralization depth, resin adhesion and dentin enzymatic activity. Dent Mater 2019; 35:900-908. [PMID: 30975484 DOI: 10.1016/j.dental.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Surface conditioning of enamel and dentin is a key step during adhesive restorative procedures and strategies. The aim of this study was to investigate the effectiveness of five α-hydroxy-acids (AHAs) as enamel and dentin surface etchants. METHODS Enamel and dentin specimens were prepared from human molars to determine the depth of demineralization by optical profilometry (Δz), the resin bond strength to enamel and dentin (μTBS), the micro-permeability of dentin-resin interfaces, and the gelatinolytic activity of dentin matrix induced by AHAs [glycolic (GA), lactic (LA), citric (CA), malic (MI) and tartaric (TA)] and controls [phosphoric (PA) and maleic (MA)]. All acids were prepared at 35% concentration. Adhesion studies employed Adper Single Bond Plus bonding system. Data were individually processed and analyzed by ANOVA, post-hoc tests and Pearson correlations (α = 0.05). RESULTS AHA exhibited statistically lower depth of demineralization of enamel and dentin (average 4 fold) than controls (p < 0.001). In enamel, MA and PA etching resulted in higher μTBS than AHA groups (p < 0.001). In dentin, GA, TA, CI and LA etching resulted in statistically similar μTBS than PA (p < 0.05). The hybrid-layer (HL) thickness and interfacial micro-permeability intensity were statistically lower for AHA groups (p < 0.05). A significant positive correlation was observed between the intensity of micro-permeability and the thickness of HL (p < 0.05). AHA etchants elicited lower dentin enzymatic activity than controls (p < 0.05). SIGNIFICANCE AHAs effectively etched enamel and dentin surfaces. In particular, GA and TA resulted in suitable μTBS and sealing ability as well as induced less gelatinolytic activity in dentin than PA and MA.
Collapse
Affiliation(s)
- Lívia Tosi Trevelin
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, UIC, Chicago, IL, USA; Department of Operative Dentistry, College of Dentistry, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Jose Villanueva
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, UIC, Chicago, IL, USA
| | - Camila A Zamperini
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, UIC, Chicago, IL, USA
| | - Mathew T Mathew
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, UIC, Chicago, IL, USA
| | - Adriana Bona Matos
- Department of Operative Dentistry, College of Dentistry, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, UIC, Chicago, IL, USA.
| |
Collapse
|
6
|
Abstract
This article provides a brief review of recent investigations concerning the structure and properties of the tooth. The last decade has brought a greater emphasis on the durability of the tooth, an improved understanding of the fatigue and fracture behavior of the principal tissues, and their importance to tooth failures. The primary contributions to tooth durability are discussed, including the process of placing a restoration, the impact of aging, and challenges posed by the oral environment. The significance of these findings to the dental community and their importance to the pursuit of lifelong oral health are highlighted.
Collapse
Affiliation(s)
- Dwayne D Arola
- Department of Materials Science and Engineering, University of Washington School of Dentistry, Roberts Hall, 333, Box 352120, Seattle, WA 98195-2120, USA; Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA 98195-2120, USA; Department of Restorative Dentistry, Box 357456, University of Washington School of Dentistry, Seattle, WA 98195-7456, USA.
| | - Shanshan Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Renmin South Road, Chengdu, 610041, China
| | - Hai Zhang
- Department of Restorative Dentistry, Box 357456, University of Washington School of Dentistry, Seattle, WA 98195-7456, USA
| | - Radi Masri
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry, 650 West Baltimore Street, 4th Floor, Suite 4228, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Arola D. Fatigue testing of biomaterials and their interfaces. Dent Mater 2017; 33:367-381. [PMID: 28222907 DOI: 10.1016/j.dental.2017.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of this article is to describe the importance of fatigue to the success of restorative dentistry, with emphasis on the methods for evaluating the fatigue properties of materials in this field, and the durability of their bonded interfaces. METHODS The stress-life fatigue and fatigue crack growth approaches for evaluating the fatigue resistance of dental biomaterials are introduced. Emphasis is placed on in vitro studies of the hard tissue foundation, restorative materials and their bonded interfaces. The concept of durability is then discussed, including the effects of conventional "mechanical" fatigue combined with pervasive threats of the oral environment, including variations in pH and the activation of endogenous dentin proteases. RESULTS There is growing evidence that fatigue is a principal contributor to the failure of restorations and that measures of static strength, used in qualifying new materials and practices, are not reflective of the fatigue performance. Results of selected studies show that the fundamental steps involved in the placement of restorations, including the cutting of preparations and etching, cause a significant reduction to the fatigue strength of the hard tissue foundation. In regards to the bonded interface, results of studies focused on fatigue resistance highlight the importance of the hybridization of resin tags, and that a reduction in integrity of the dentin collagen is detrimental to the durability of dentin bonds. SIGNIFICANCE Fatigue should be a central concern in the development of new dental materials and in assessing the success of restorative practices. A greater recognition of contributions from fatigue to restoration failures, and the development of approaches with closer connection to in vivo conditions, will be essential for extending the definition of lifelong oral health.
Collapse
Affiliation(s)
- Dwayne Arola
- Department of Materials Science and Engineering, University of Washington Seattle, WA, USA; Departments of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA; Departments of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|