1
|
Verstappen K, Klymov A, Marques PAAP, Leeuwenburgh SCG, Walboomers XF. Incorporation of graphene oxide into collagenous biomaterials attenuates scar-forming phenotype transition of reactive astrocytes in vitro. Brain Res Bull 2025; 227:111380. [PMID: 40383237 DOI: 10.1016/j.brainresbull.2025.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
The integrin-mediated interaction between collagen type I and reactive astrocytes was recently shown to induce a detrimental, scar-forming phenotype transformation following spinal cord injury (SCI), which severely limits the therapeutic potential of commonly used collagen-based biomaterials. Graphene oxide (GO) is a promising candidate to disrupt the collagen-integrin interaction, since it is capable of altering the surface topography of biomaterials applied as SCI treatment. Moreover, free GO contributes towards potassium and glutamate transport, which is often implicated following SCI. However, it remains unclear whether both the integrin-mediated binding and astrocytic transport of potassium and glutamate are affected by GO, when inserted into collagenous biomaterials. Therefore, in the current study GO was incorporated into collagen-based hydrogels in an attempt to prevent the scar-forming phenotype transition and promote the expression of astrocytic potassium channels and glutamate transporters. Primary astrocytes were cultured either on top of or embedded within GO-enriched collagen type I or adipose tissue-derived extracellular matrix (ECM) gels. The impact of GO incorporation on integrin β1-mediated binding, astrocyte phenotype and potassium and glutamate transport was assessed by gene expression analysis and immunofluorescence studies. Upon GO incorporation into ECM gels, expression of integrin β1 and N-cadherin was significantly decreased. Moreover, GO decreased proteoglycan-associated gene expression by four-fold. Finally, GO incorporation led to a decrease in expression of both potassium channels and glutamate transporters. In conclusion, the incorporation of GO into collagen-based materials attenuated the transition of reactive astrocytes into a scar-forming phenotype.
Collapse
Affiliation(s)
- Kest Verstappen
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - Alexey Klymov
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - X Frank Walboomers
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| |
Collapse
|
2
|
Luna-Figueroa E, Bernal-Ramírez J, Vázquez-Garza E, Huerta-Arcos L, García-Rivas G, Contreras-Torres FF. Angiotensin II-Induced Hypertrophy in H9c2 Cells Reveals Severe Cytotoxicity of Graphene Oxide. ACS OMEGA 2025; 10:7327-7337. [PMID: 40028060 PMCID: PMC11866173 DOI: 10.1021/acsomega.4c11130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
This study investigates the differential cytotoxicity of reduced graphene oxide (RGO) and graphene oxide (GO) particles using an angiotensin II (Ang II)-induced hypertrophy model in H9c2 cells. Herein, GO particles were synthesized from graphite, and subsequent reduction was carried out to obtain RGO particles. To ensure a thorough assessment of particle size, functionalization, and purity, the particles were characterized by using UV-vis absorbance spectroscopy, dynamic light scattering, X-ray photoelectron spectroscopy, FTIR spectroscopy, Raman spectroscopy, and scanning electron microscopy. Comprehensive characterization revealed that the transformation from GO (∼21.6% content of oxygen) to RGO (∼13.3% content of oxygen) results in an enrichment in the proportion of sp2 carbon. Additionally, rat cardiac myoblasts of the H9c2 cell line were subjected to Ang II to induce cellular hypertrophy, leading to cytoskeleton remodeling, increased cardiac myocyte surface area, extracellular matrix alterations, and collagen type 1a upregulation. To evaluate cytotoxicity, H9c2 cells were treated with RGO and GO suspensions at concentrations ranging from 1 to 10,000 μg/mL, and metabolic viability was assessed in both concentration- and time-dependent assays. GO and RGO reduced the viability of H9c2 cells; however, the metabolic viability assays showed that the half-maximal inhibitory concentration (IC50) values for GO and RGO were significantly lower in hypertrophic cardiomyocytes, with GO exhibiting an IC50 of 12.6 ± 10.7 μg/mL and RGO exhibiting an IC50 of 86.3 ± 12.9 μg/mL, compared to control cells (676.0 ± 80.3 μg/mL for GO and 152.9 ± 40.1 μg/mL for RGO). These results demonstrate that under hypertrophic conditions, there is a significant increase of cytotoxicity for GO (50-fold increase) in comparison to RGO (1.7-fold increase). It was demonstrated that GO particles create a pro-oxidative environment that ultimately leads to mechanistic impairments and cell death. Vulnerable populations predisposed to cardiac damage may be at increased risk of experiencing toxicity caused by the use of GO particles in potential bioapplications.
Collapse
Affiliation(s)
- Estefanía Luna-Figueroa
- Tecnologico
de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico
| | - Judith Bernal-Ramírez
- Tecnologico
de Monterrey, The Institute for Obesity Research, Unit of Experimental
Medicine, Monterrey 64849, Mexico
| | - Eduardo Vázquez-Garza
- Tecnologico
de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Mexico
| | - Lázaro Huerta-Arcos
- Universidad
Nacional Autónoma de México, Instituto de Investigaciones en Materiales, Ciudad de México 04510, Mexico
| | - Gerardo García-Rivas
- Tecnologico
de Monterrey, The Institute for Obesity Research, Unit of Experimental
Medicine, Monterrey 64849, Mexico
| | - Flavio F. Contreras-Torres
- Tecnologico
de Monterrey, The Institute for Obesity Research, Unit of Experimental
Medicine, Monterrey 64849, Mexico
| |
Collapse
|
3
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
4
|
Shokrollahi P, Omidi Y, Cubeddu LX, Omidian H. Conductive polymers for cardiac tissue engineering and regeneration. J Biomed Mater Res B Appl Biomater 2023; 111:1979-1995. [PMID: 37306139 DOI: 10.1002/jbm.b.35293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, are considered a significant global burden and the leading cause of death. Given the inability of damaged cardiac tissue to self-repair, cell-based tissue engineering and regeneration may be the only viable option for restoring normal heart function. To maintain the normal excitation-contraction coupling function of cardiac tissue, uniform electronic and ionic conductance properties are required. To transport cells to damaged cardiac tissues, several techniques, including the incorporation of cells into conductive polymers (CPs) and biomaterials, have been utilized. Due to the complexity of cardiac tissues, the success of tissue engineering for the damaged heart is highly dependent on several variables, such as the cell source, growth factors, and scaffolds. In this review, we sought to provide a comprehensive overview of the electro CPs and biomaterials used in the engineering and regeneration of heart tissue.
Collapse
Affiliation(s)
- Parvin Shokrollahi
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Luigi X Cubeddu
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
5
|
Grilli F, Hassan EM, Variola F, Zou S. Harnessing graphene oxide nanocarriers for siRNA delivery in a 3D spheroid model of lung cancer. Biomater Sci 2023; 11:6635-6649. [PMID: 37609774 DOI: 10.1039/d3bm00732d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Gene therapy has been recently proposed as an effective strategy for cancer treatment. A significant body of literature proved the effectiveness of nanocarriers to deliver therapeutic agents to 2D tumour models, which are simple but not always representative of the in vivo reality. In this study, we analyze the efficiency of 3D spheroids combined with a minimally modified graphene oxide (GO)-based nanocarrier for siRNA delivery as a new system for cell transfection. Small interfering RNA (siRNA) targeting cluster of differentiation 47 (CD47; CD47_siRNA) was used as an anti-tumour therapeutic agent to silence the genes expressing CD47. This is a surface marker able to send a "don't eat me" signal to macrophages to prevent their phagocytosis. Also, we report the analysis of different GO formulations, in terms of size (small: about 100 nm; large: >650 nm) and functionalization (unmodified or modified with polyethylene glycol (PEG) and the dendrimer PAMAM), aiming to establish the efficiency of unmodified GO as a nanocarrier for the transfection of A549 lung cancer spheroids. Small modified GO (smGO) showed the highest transfection efficiency values (>90%) in 3D models. Interestingly, small unmodified GO (sGO) was found to be promising for transfection, with efficiency values >80% using a higher siRNA ratio (i.e., 3 : 1). These results demonstrated the higher efficiency of spheroids compared to 2D models for transfection, and the high potential of unmodified GO to carry siRNA, providing a promising new in vitro model system for the analysis of anticancer gene therapies.
Collapse
Affiliation(s)
- Francesca Grilli
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Eman M Hassan
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, ON K1N 6N5, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
6
|
Santos-Aguilar P, Bernal-Ramírez J, Vázquez-Garza E, Vélez-Escamilla LY, Lozano O, García-Rivas GDJ, Contreras-Torres FF. Synthesis and Characterization of Rutile TiO 2 Nanoparticles for the Toxicological Effect on the H9c2 Cell Line from Rats. ACS OMEGA 2023; 8:19024-19036. [PMID: 37273591 PMCID: PMC10233665 DOI: 10.1021/acsomega.3c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
The widespread use of titanium dioxide (TiO2) has raised concerns about potential health risks associated with its cytotoxicity in the cardiovascular system. To evaluate the cytotoxicity of TiO2 particles, the H9c2 rat cardiomyoblasts were used as a biological model, and their toxicological susceptibility to TiO2-anatase and TiO2-rutile particles was studied in vitro. The study examined dose and time exposure responses. The cell viability was evaluated based on metabolic inhibition and membrane integrity loss. The results revealed that both TiO2-anatase and TiO2-rutile particles induced similar levels of cytotoxicity at the inhibition concentrations IC25 (1.4-4.4 μg/cm2) and IC50 (7.2-9.3 μg/cm2). However, at more significant concentrations, TiO2-rutile appeared to be more cytotoxic than TiO2-anatase at 24 h. The study found that the TiO2 particles induced apoptosis events, but necrosis was not observed at any of the concentrations of particles used. The study considered the effects of microstructural properties, crystalline phase, and particle size in determining the capability of TiO2 particles to induce cytotoxicity in H9c2 cardiomyoblasts. The microstress in TiO2 particles was assessed using powder X-ray diffraction through Williamson-Hall and Warren-Averbach analysis. The analysis estimated the apparent crystallite domain and microstrain of TiO2-anatase to be 29 nm (ε = 1.03%) and TiO2-rutile to be 21 nm (ε = 0.53%), respectively. Raman spectroscopy, N2 adsorption isotherms, and dynamic light scattering were used to identify the presence of pure crystalline phases (>99.9%), comparative surface areas (10 m2/g), and ζ-potential values (-24 mV). The difference in the properties of TiO2 particles made it difficult to attribute the cytotoxicity solely to one variable.
Collapse
Affiliation(s)
- Pamela Santos-Aguilar
- Escuela
de Ingeniería y Ciencias, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| | - Judith Bernal-Ramírez
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
| | - Eduardo Vázquez-Garza
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
| | | | - Omar Lozano
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
- The
Institute for Obesity Research, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| | - Gerardo de Jesús García-Rivas
- Escuela
de Medicina y Ciencias de la Salud, Tecnologico
de Monterrey, Monterrey, N.L. 64460, Mexico
- The
Institute for Obesity Research, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| | - Flavio F. Contreras-Torres
- Escuela
de Ingeniería y Ciencias, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
- The
Institute for Obesity Research, Tecnologico
de Monterrey, Monterrey, N.L. 64849, Mexico
| |
Collapse
|
7
|
González V, Frontiñan-Rubio J, Gomez MV, Montini T, Durán-Prado M, Fornasiero P, Prato M, Vázquez E. Easy and Versatile Synthesis of Bulk Quantities of Highly Enriched 13C-Graphene Materials for Biological and Safety Applications. ACS NANO 2023; 17:606-620. [PMID: 36538410 PMCID: PMC9835986 DOI: 10.1021/acsnano.2c09799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The preparation of bulk quantities of 13C-labeled graphene materials is relevant for basic investigations and for practical applications. In addition, 13C-labeled graphene materials can be very useful in biological and environmental studies, as they may allow the detection of graphene or its derivatives in cells or organs. In this paper, we describe the synthesis of 13C-labeled graphene materials (few-layer graphene, FLG, and graphene oxide, GO) on a tens of mg scale, starting from 13C-labeled methane to afford carbon fibers, followed by liquid-phase exfoliation (FLG) or oxidation (GO). The materials have been characterized by several analytical and microscopic techniques, including Raman and nuclear magnetic resonance spectroscopies, thermogravimetric analysis, X-ray photoelectron spectroscopy, and X-ray powder diffraction. As a proof of concept, the distribution of the title compounds in cells has been investigated. In fact, the analysis of the 13C/12C ratio with isotope ratio mass spectrometry (IRMS) allows the detection and quantification of very small amounts of material in cells or biological compartments with high selectivity, even when the material has been degraded. During the treatment of 13C-labeled FLG with HepG2 cells, 4.1% of the applied dose was found in the mitochondrial fraction, while 4.9% ended up in the nuclear fraction. The rest of the dose did not enter into the cell and remained in the plasma membrane or in the culture media.
Collapse
Affiliation(s)
- Viviana González
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
| | - Javier Frontiñan-Rubio
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
- Cell
Biology Area, Department of Medical Sciences, Faculty of Medicine, Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
| | - M. Victoria Gomez
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
- Faculty
of Chemical Science and Technology, Universidad
de Castilla-La Mancha, 13071Ciudad Real, Spain
| | - Tiziano Montini
- Department
of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Giorgeri 1, 34127Trieste, Italy
- ICCOM-CNR, University of Trieste, Via L. Giorgieri 1, 34127Trieste, Italy
| | - Mario Durán-Prado
- Cell
Biology Area, Department of Medical Sciences, Faculty of Medicine, Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
| | - Paolo Fornasiero
- Department
of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Giorgeri 1, 34127Trieste, Italy
- ICCOM-CNR, University of Trieste, Via L. Giorgieri 1, 34127Trieste, Italy
| | - Maurizio Prato
- Department
of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Giorgeri 1, 34127Trieste, Italy
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014Donostia San Sebastián, Spain
- Basque
Foundation for Science (IKERBASQUE), Plaza Euskadi 5, 48013Bilbao, Spain
| | - Ester Vázquez
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071Ciudad Real, Spain
- Faculty
of Chemical Science and Technology, Universidad
de Castilla-La Mancha, 13071Ciudad Real, Spain
| |
Collapse
|
8
|
Daniluk K, Lange A, Pruchniewski M, Małolepszy A, Sawosz E, Jaworski S. Delivery of Melittin as a Lytic Agent via Graphene Nanoparticles as Carriers to Breast Cancer Cells. J Funct Biomater 2022; 13:278. [PMID: 36547538 PMCID: PMC9787603 DOI: 10.3390/jfb13040278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Melittin, as an agent to lyse biological membranes, may be a promising therapeutic agent in the treatment of cancer. However, because of its nonspecific actions, there is a need to use a delivery method. The conducted research determined whether carbon nanoparticles, such as graphene and graphene oxide, could be carriers for melittin to breast cancer cells. The studies included the analysis of intracellular pH, the potential of cell membranes, the type of cellular transport, and the expression of receptor proteins. By measuring the particle size, zeta potential, and FT-IT analysis, we found that the investigated nanoparticles are connected by electrostatic interactions. The level of melittin encapsulation with graphene was 86%, while with graphene oxide it was 78%. A decrease in pHi was observed for all cell lines after administration of melittin and its complex with graphene. The decrease in membrane polarization was demonstrated for all lines treated with melittin and its complex with graphene and after exposure to the complex of melittin with graphene oxide for the MDA-MB-231 and HFFF2 lines. The results showed that the investigated melittin complexes and the melittin itself act differently on different cell lines (MDA-MB-231 and MCF-7). It has been shown that in MDA-MD-231 cells, melittin in a complex with graphene is transported to cells via caveolin-dependent endocytosis. On the other hand, the melittin-graphene oxide complex can reach breast cancer cells through various types of transport. Other differences in protein expression changes were also observed for tumor lines after exposure to melittin and complexes.
Collapse
Affiliation(s)
- Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Michał Pruchniewski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-654 Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
9
|
Dai D, Chen Y, Wang Q, Wang C, Zhang C. Graphene oxide induced dynamic changes of autophagy-lysosome pathway and cell apoptosis via TFEB dysregulation in F98 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114172. [PMID: 36244172 DOI: 10.1016/j.ecoenv.2022.114172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The extensive application of graphene oxide (GO) nanomaterials increases the risk of their release into the environment, thus posing a threat to the human body. Multiple studies indicate that GO could lead to neurotoxicity, while the intricate biological effects of GO in astrocytes remain unclear. The autophagic disorder was considered an important part of the exposure risk of GO in the application of neuromedicine. This study explored the key regulators mediating the autophagic process in rat astroglioma-derived F98 cells caused by GO, especially the dynamic changes in the cellular physiological state over time. We identified transcription factor EB (TFEB), a critical regulator of the autophagy-lysosome pathway (ALP), as a crucial factor in GO-induced autophagy flux blockade and cell apoptosis. Specifically, the prolonged exposure to GO increased the amount of its cellular internalization, which gradually prevented TFEB from entering the nucleus, thereby leading to the subsequent ALP dysfunction and excessive cell apoptosis. Furthermore, STIP1 homology and U-Box containing protein 1 (STUB1), an E3 ubiquitin ligase, was responsible for GO-triggered TFEB dysregulation, and overexpression of STUB1 helped alleviate GO cytotoxicity. Our study highlights that impaired TFEB activity underlies compromised autophagy flux in GO-induced apoptosis and opens up new avenues for the application of GO-based nanotherapeutics with specific autophagy-regulating properties in the central nervous system.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuming Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qiuyu Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chunlin Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
10
|
Rahimi S, Chen Y, Zareian M, Pandit S, Mijakovic I. Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells. Adv Drug Deliv Rev 2022; 189:114467. [PMID: 35914588 DOI: 10.1016/j.addr.2022.114467] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023]
Abstract
Despite significant advances in early detection and personalized treatment, cancer is still among the leading causes of death globally. One of the possible anticancer approaches that is presently receiving a lot of attention is the development of nanocarriers capable of specific and efficient delivery of anticancer drugs. Graphene-based materials are promising nanocarriers in this respect, due to their high drug loading capacity and biocompatibility. In this review, we present an overview on the interactions of graphene-based materials with normal mammalian cells at the molecular level as well as cellular and subcellular levels, including plasma membrane, cytoskeleton, and membrane-bound organelles such as lysosomes, mitochondria, nucleus, endoplasmic reticulum, and peroxisome. In parallel, we assemble the knowledge about the interactions of graphene-based materials with cancerous cells, that are considered as the potential applications of these materials for cancer therapy including metastasis treatment, targeted drug delivery, and differentiation to non-cancer stem cells. We highlight the influence of key parameters, such as the size and surface chemistry of graphene-based materials that govern the efficiency of internalization and biocompatibility of these particles in vitro and in vivo. Finally, this review aims to correlate the key parameters of graphene-based nanomaterials specially graphene oxide, such as size and surface modifications, to their interactions with the cancerous and non-cancerous cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
Collapse
Affiliation(s)
- Shadi Rahimi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Yanyan Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Mohsen Zareian
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden; State Key Laboratory of Bio-based Material and Green Paper-making, Qilu University of Technology, Jinan, China
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Voitko KV, Goshovska YV, Demianenko EM, Sementsov YI, Zhuravskyi SV, Mys LA, Korkach YP, Kolev H, Sagach VF. Graphene oxide nanoflackes prevent reperfussion injury of Langerdorff isolated rat heart providing antioxidative activity in situ. Free Radic Res 2022; 56:328-341. [PMID: 35769030 DOI: 10.1080/10715762.2022.2096450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Carbon materials possess powerful antioxidant activity that might be promising for the development of new generation treatment of cardiovascular diseases, ischemic conditions, and reperfusion injury. The present study aimed to characterize the structure of nanosized graphene oxide (GrO) sample and evaluate the antioxidant efficacy of GrO in situ models of oxidative stress widely used in pre-clinical studies. The structure and surface chemistry of the initial samples were analyzed via LDS, RAMAN, LDI, TPD-MS, and FTIR methods. The GrO showed a strong ability to scavenge DPPH, hydroxyl, and superoxide anion free radicals and have a total antioxidant capacity. The DFT quantum-chemical calculation demonstrated the radical scavenging effect of GrO proceeding due to the physical adsorption of the free radical on the surface. For evaluation of the antioxidant effect of GrO in situ, we used the model of ischemia-reperfusion (I/R) of Langendorff isolated rat heart. We revealed that intravenous pretreatment of Wistar male rats with GrO significantly increased resistance of myocardium to I/R, improved restoration of heart function, prevented non-effective oxygen utilization, and I/R induced reactive oxygen species production in cardiac tissue. Thus, our data demonstrate the perspective of further use of GrO for the development of antiischemic therapy.
Collapse
Affiliation(s)
- Kateryna V Voitko
- Department of Physico-chemistry of Carbon Materials;Chuiko Institute of Surface Chemistry, NAS of Ukraine; 17 General Naumov Str.,Kyiv 03164, Ukraine
| | - Yulia V Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| | - Eugeniy M Demianenko
- Department of Quantum Chemistry and Chemical Physics of Nanosystems;Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., Kyiv 03164, Ukraine
| | - Yury I Sementsov
- Department of Physico-chemistry of Carbon Materials;Chuiko Institute of Surface Chemistry, NAS of Ukraine; 17 General Naumov Str.,Kyiv 03164, Ukraine
| | - Sergey V Zhuravskyi
- Department of Physico-chemistry of Carbon Materials;Chuiko Institute of Surface Chemistry, NAS of Ukraine; 17 General Naumov Str.,Kyiv 03164, Ukraine
| | - Lida A Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| | - Yulia P Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| | - Hristo Kolev
- Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bldg 11, 1113 Sofia, Bulgaria
| | - Vadym F Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| |
Collapse
|
12
|
Ardoña HAM, Zimmerman JF, Shani K, Kim SH, Eweje F, Bitounis D, Parviz D, Casalino E, Strano M, Demokritou P, Parker KK. Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NANOIMPACT 2022; 26:100401. [PMID: 35560286 PMCID: PMC9812361 DOI: 10.1016/j.impact.2022.100401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 05/14/2023]
Abstract
Engineered nanomaterials offer the benefit of having systematically tunable physicochemical characteristics (e.g., size, dimensionality, and surface chemistry) that highly dictate the biological activity of a material. Among the most promising engineered nanomaterials to date are graphene-family nanomaterials (GFNs), which are 2-D nanomaterials (2DNMs) with unique electrical and mechanical properties. Beyond engineering new nanomaterial properties, employing safety-by-design through considering the consequences of cell-material interactions is essential for exploring their applicability in the biomedical realm. In this study, we asked the effect of GFNs on the endothelial barrier function and cellular architecture of vascular endothelial cells. Using micropatterned cell pairs as a reductionist in vitro model of the endothelium, the progression of cytoskeletal reorganization as a function of GFN surface chemistry and time was quantitatively monitored. Here, we show that the surface oxidation of GFNs (graphene, reduced graphene oxide, partially reduced graphene oxide, and graphene oxide) differentially affect the endothelial barrier at multiple scales; from the biochemical pathways that influence the development of cellular protrusions to endothelial barrier integrity. More oxidized GFNs induce higher endothelial permeability and the increased formation of cytoplasmic protrusions such as filopodia. We found that these changes in cytoskeletal organization, along with barrier function, can be potentiated by the effect of GFNs on the Rho/Rho-associated kinase (ROCK) pathway. Specifically, GFNs with higher surface oxidation elicit stronger ROCK2 inhibitory behavior as compared to pristine graphene sheets. Overall, findings from these studies offer a new perspective towards systematically controlling the surface-dependent effects of GFNs on cytoskeletal organization via ROCK2 inhibition, providing insight for implementing safety-by-design principles in GFN manufacturing towards their targeted biomedical applications.
Collapse
Affiliation(s)
- Herdeline Ann M Ardoña
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - John F Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Su-Hwan Kim
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Feyisayo Eweje
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Evan Casalino
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Michael Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA.
| |
Collapse
|
13
|
Cheng YH, Cheng SJ, Chen HH, Hsu WC. Development of injectable graphene oxide/laponite/gelatin hydrogel containing Wharton's jelly mesenchymal stem cells for treatment of oxidative stress-damaged cardiomyocytes. Colloids Surf B Biointerfaces 2021; 209:112150. [PMID: 34656814 DOI: 10.1016/j.colsurfb.2021.112150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/13/2021] [Accepted: 10/03/2021] [Indexed: 11/08/2022]
Abstract
In the initial stage of myocardial infarction (MI), cardiomyocyte necrosis activates aninflammatory response and increases the reactive oxygen species (ROS) content. Graphene oxide (GO) possesses potential antioxidant properties and can provide the adequate mechanical support for cell growth. The clinical studies showed that direct injection of Wharton's jelly mesenchymal stem cells (WJ-MSCs) into infarcted areas of myocardium can reduce apoptosis and fibrosis. Gelatin is a natural polymer and can promote cell attachment. Nanoclay laponite with shear-thinning properties can be injected and gelled in-situ without chemical triggers. In the study, injectable GO/laponite/gelatin (GO-LG) hydrogel was developed and characterized. The results of cell viability showed that the optimal concentration of GO flasks (200 to 300 nm) to treat cells was 100 μg/ml. Addition of nanosized GO to the laponite/gelatin (LG) hydrogel could increase the mechanical strength and have both hemocompatibility and cytocompatibility. The release of GO from LG hydrogel could inhibit the H2O2-induced oxidative stress. The GO-LG hydrogel containing WJ-MSCs could decrease inflammation and apoptosis level and increase the cell viability of cardiomyocytes under oxidative stress. We believe that utilizing this newly developed GO-LG hydrogel containing WJ-MSCs may have potential applications in the future for treatment of MI.
Collapse
Affiliation(s)
- Yung-Hsin Cheng
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Shih-Jen Cheng
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsin-Ho Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wei-Chia Hsu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| |
Collapse
|
14
|
Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics 2021; 13:pharmaceutics13101642. [PMID: 34683935 PMCID: PMC8537309 DOI: 10.3390/pharmaceutics13101642] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxyapatite (HAP) has been the gold standard in the biomedical field due to its composition and similarity to human bone. Properties such as shape, size, morphology, and ionic substitution can be tailored through the use of different synthesis techniques and compounds. Regardless of the ability to determine its physicochemical properties, a conclusion for the correlation with the biological response it is yet to be found. Hence, a special focus on the most desirable properties for an appropriate biological response needs to be addressed. This review provides an overview of the fundamental properties of hydroxyapatite nanoparticles and the characterization of physicochemical properties involved in their biological response and role as a drug delivery system. A summary of the main chemical properties and applications of hydroxyapatite, the advantages of using nanoparticles, and the influence of shape, size, functional group, morphology, and crystalline phase in the biological response is presented. A special emphasis was placed on the analysis of chemical and physical interactions of the nanoparticles and the cargo, which was explained through the use of spectroscopic and physical techniques such as FTIR, Raman, XRD, SEM, DLS, and BET. We discuss the properties tailored for hydroxyapatite nanoparticles for a specific biomolecule based on the compilation of studies performed on proteins, peptides, drugs, and genetic material.
Collapse
|
15
|
Jiang T, Amadei CA, Lin Y, Gou N, Rahman SM, Lan J, Vecitis CD, Gu AZ. Dependence of Graphene Oxide (GO) Toxicity on Oxidation Level, Elemental Composition, and Size. Int J Mol Sci 2021; 22:ijms221910578. [PMID: 34638921 PMCID: PMC8508828 DOI: 10.3390/ijms221910578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The mass production of graphene oxide (GO) unavoidably elevates the chance of human exposure, as well as the possibility of release into the environment with high stability, raising public concern as to its potential toxicological risks and the implications for humans and ecosystems. Therefore, a thorough assessment of GO toxicity, including its potential reliance on key physicochemical factors, which is lacking in the literature, is of high significance and importance. In this study, GO toxicity, and its dependence on oxidation level, elemental composition, and size, were comprehensively assessed. A newly established quantitative toxicogenomic-based toxicity testing approach, combined with conventional phenotypic bioassays, were employed. The toxicogenomic assay utilized a GFP-fused yeast reporter library covering key cellular toxicity pathways. The results reveal that, indeed, the elemental composition and size do exert impacts on GO toxicity, while the oxidation level exhibits no significant effects. The UV-treated GO, with significantly higher carbon-carbon groups and carboxyl groups, showed a higher toxicity level, especially in the protein and chemical stress categories. With the decrease in size, the toxicity level of the sonicated GOs tended to increase. It is proposed that the covering and subsequent internalization of GO sheets might be the main mode of action in yeast cells.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (C.A.A.); (C.D.V.)
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
- Correspondence: (Y.L.); (A.Z.G.)
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (C.A.A.); (C.D.V.)
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (Y.L.); (A.Z.G.)
| |
Collapse
|
16
|
Xiaoli F, Yaqing Z, Ruhui L, Xuan L, Aijie C, Yanli Z, Chen H, Lili C, Longquan S. Graphene oxide disrupted mitochondrial homeostasis through inducing intracellular redox deviation and autophagy-lysosomal network dysfunction in SH-SY5Y cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126158. [PMID: 34492938 DOI: 10.1016/j.jhazmat.2021.126158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/05/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) nanomaterials have significant advantages for drug delivery and electrode materials in neural science, however, their exposure risks to the central nervous system (CNS) and toxicity concerns are also increased. The current studies of GO-induced neurotoxicity remain still ambiguous, let alone the mechanism of how complicated GO chemistry affects its biological behavior with neural cells. In this study, we characterized the commercially available GO in detail and investigated its biological adverse effects using cultured SH-SY5Y cells. We found that ultrasonic processing in medium changed the oxidation status and surface reactivity on the planar surface of GO due to its hydration activity, causing lipid peroxidation and cell membrane damage. Subsequently, ROS-disrupted mitochondrial homeostasis, resulting from the activation of NOX2 signaling, was observed following GO internalization. The autophagy-lysosomal network was initiated as a defensive reaction to obliterate oxidative damaged mitochondria and foreign nanomaterials, which was ineffective due to reduced lysosomal degradation capacity. These sequential cellular responses exacerbated mitochondrial stress, leading to apoptotic cell death. These data highlight the importance of the structure-related activity of GO on its biological properties and provide an in-depth understanding of how GO-derived cellular redox signaling induces mitochondrion-related cascades that modulate cell functionality and survival.
Collapse
Affiliation(s)
- Feng Xiaoli
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Zhang Yaqing
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Luo Ruhui
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lai Xuan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Aijie
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Yanli
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hu Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Lili
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shao Longquan
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
17
|
Cicuéndez M, Coimbra A, Santos J, Oliveira H, Ayán−Varela M, Paredes JI, Villar−Rodil S, Vila M, Silva VS. Cytotoxicity of Nucleotide-Stabilized Graphene Dispersions on Osteosarcoma and Healthy Cells: On the Way to Safe Theranostics Agents. ACS APPLIED BIO MATERIALS 2021; 4:4384-4393. [DOI: 10.1021/acsabm.1c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mónica Cicuéndez
- CICECO, Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
- NRG-TEMA, Mechanical Engineering Department, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193 , Portugal
| | - Andreia Coimbra
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Joana Santos
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Helena Oliveira
- CICECO, Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Miguel Ayán−Varela
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Juan Ignacio. Paredes
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Sílvia Villar−Rodil
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Mercedes Vila
- NRG-TEMA, Mechanical Engineering Department, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193 , Portugal
| | - Virgília Sofia Silva
- CESAM & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
18
|
Guerrero-Beltrán CE, Mijares-Rojas IA, Salgado-Garza G, Garay-Gutiérrez NF, Carrión-Chavarría B. Peptidic vaccines: The new cure for heart diseases? Pharmacol Res 2020; 164:105372. [PMID: 33316382 DOI: 10.1016/j.phrs.2020.105372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease continues to be the most common cause of death worldwide. The global burden is so high that numerous organizations are providing counseling recommendations and annual revisions of current pharmacological and non-pharmacological treatments as well as risk prediction for disease prevention and further progression. Although primary preventive interventions targeting risk factors such as obesity, hypertension, smoking, and sedentarism have led to a global decline in hospitalization rates, the aging population has overwhelmed these efforts on a global scale. This review focuses on peptidic vaccines, with the known and not well-known autoantigens in atheroma formation or acquired cardiac diseases, as novel potential immunotherapy approaches to counteract harmful heart disease continuance. We summarize how cancer immunomodulatory strategies started novel approaches to modulate the innate and adaptive immune responses, and how they can be targeted for therapeutic purposes in the cardiovascular system. Brief descriptions focused on the processes that start as either immunologic or non-immunologic, and the ultimate loss of cardiac muscle cell contractility as the outcome, are discussed. We conclude debating how novel strategies with nanoparticles and nanovaccines open a promising therapeutic option to reduce or prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Carlos Enrique Guerrero-Beltrán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico; Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, N.L., Mexico.
| | - Iván Alfredo Mijares-Rojas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Gustavo Salgado-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Noé Francisco Garay-Gutiérrez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Belinda Carrión-Chavarría
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| |
Collapse
|
19
|
Characterization of carotid endothelial cell proliferation on Au, Au/GO, and Au/rGO surfaces by electrical impedance spectroscopy. Med Biol Eng Comput 2020; 58:1431-1443. [PMID: 32319031 DOI: 10.1007/s11517-020-02166-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
To the best of the authors' knowledge, testing the biocompatibility of graphene coatings can be considered as the first to demonstrate human carotid endothelial cell (HCtAEC) proliferation on Au, graphene oxide-coated Au (Au/GO), and reduced graphene oxide-coated Au (Au/rGO) surfaces. We hypothesized that stent material modified with graphene (G)-based coatings could be used as electrodes for electrical impedance spectroscopy (EIS) in monitoring cell cultures, i.e., endothelialization. Alamar Blue cell viability assay and cell staining and cell counting with optical images were performed. For EIS analysis, an EIS sensor consisting of Au surface electrodes was produced by the photolithographic technique. Surface characterizations were performed by considering scanning electron microscope (SEM) and water contact angle analyses. Results showed that GO and rGO coatings did not prevent neither the electrical measurements nor the cell proliferation and that rGO had a positive effect on HCtAEC proliferation. The rate of increase of impedance change from day 1 to day 10 was nearly fivefold for all electrode surfaces. Alamar Blue assay performed to monitor cell proliferation rates between groups, and rGO has shown the highest Alamar Blue reduction value of 43.65 ± 8.79%. Graphical abstract.
Collapse
|
20
|
Xiaoli F, Qiyue C, Weihong G, Yaqing Z, Chen H, Junrong W, Longquan S. Toxicology data of graphene-family nanomaterials: an update. Arch Toxicol 2020; 94:1915-1939. [DOI: 10.1007/s00204-020-02717-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
|
21
|
Girão AF, Serrano MC, Completo A, Marques PAAP. Do biomedical engineers dream of graphene sheets? Biomater Sci 2019; 7:1228-1239. [PMID: 30720810 DOI: 10.1039/c8bm01636d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past few years, graphene has outstandingly emerged as a key nanomaterial for boosting the performance of commercial, industrial and scientific related technologies. The popularity of this novel nanomaterial in biomedical engineering is due to its excellent biological, electronic, optical and thermal properties that, as a whole, surpass the features of commonly used biomaterials and consequently open a wide range of applications so far within the reach of science fiction. In this minireview, the potential of graphene and its based materials in the expanding biomedical field is highlighted with focus on groundbreaking diagnostic, monitoring and therapeutic strategies. Some of the major challenges related to the synthesis and safety of graphene-based materials are also briefly discussed because of their critical importance in bringing this class of carbon materials closer to the clinic.
Collapse
Affiliation(s)
- André F Girão
- TEMA, Department of Mechanical Engineering, University of Aveiro (UA), 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
22
|
Graphene-Based Nanomaterials in Soil: Ecotoxicity Assessment Using Enchytraeus crypticus Reduced Full Life Cycle. NANOMATERIALS 2019; 9:nano9060858. [PMID: 31195669 PMCID: PMC6631203 DOI: 10.3390/nano9060858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
Graphene-based nanomaterials (GBNs) possess unique physicochemical properties, allowing a wide range of applications in physical, chemical, and biomedical fields. Although GBNs are broadly used, information about their adverse effects on ecosystem health, especially in the terrestrial environment, is limited. Therefore, this study aims to assess the toxicity of two commonly used derivatives of GBNs, graphene oxide (GO) and reduced graphene oxide (rGO), in the soil invertebrate Enchytraeus crypticus using a reduced full life cycle test. At higher exposure concentrations, GO induced high mortality and severe impairment in the reproduction rate, while rGO showed little adverse effect up to 1000 mg/kg. Collectively, our body of results suggests that the degree of oxidation of GO correlates with their toxic effects on E. crypticus, which argues against generalization on GBNs ecotoxicity. Identifying the key factors affecting the toxicity of GBNs, including ecotoxicity, is urgent for the design of safe GBNs for commercial purposes.
Collapse
|
23
|
Chen X, Feng B, Zhu DQ, Chen YW, Ji W, Ji TJ, Li F. Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo. Int J Nanomedicine 2019; 14:3669-3678. [PMID: 31190818 PMCID: PMC6535102 DOI: 10.2147/ijn.s204971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Electrospun gelatin/polycaprolactone (Gt/PCL) nanofibrous scaffolds loaded with graphene are novel nanomaterials with the uniquely strong property of electrical conductivity, which have been widely investigated for their potential applications in cardiovascular tissue engineering, including in bypass tracts for atrioventricular block. Purpose: Electrospun Gt/PCL/graphene nanofibrous mats were successfully produced. Scanning electron micrography showed that the fibers with graphene were smooth and homogeneous. In vitro, to determine the biocompatibility of the scaffolds, hybrid scaffolds with different fractions of graphene were seeded with neonatal rat ventricular myocytes. In vivo, Gt/PCL scaffolds with different concentrations of graphene were implanted into rats for 4, 8 and 12 weeks. Results: CCK-8 assays and histopathological staining (including DAPI, cTNT, and CX43) indicated that cells grew and survived well on the hybrid scaffolds if the mass fraction of graphene was lower than 0.5%. After implanting into rats for 4, 8 or 12 weeks, there was no gathering of inflammatory cells around the nanomaterials according to the HE staining results. Conclusion: The results indicate that Gt/PCL nanofibrous scaffolds loaded with graphene have favorable electrical conductivity and biological properties and may be suitable scaffolds for use in the treatment of atrioventricular block. These findings alleviate safety concerns and provide novel insights into the potential applications of Gt/PCL loaded with graphene, offering a solid foundation for comprehensive in vivo studies.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Bei Feng
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Di-Qi Zhu
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yi-Wei Chen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Wei Ji
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Tian-Ji Ji
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Thermal Reduction of Graphene Oxide Mitigates Its In Vivo Genotoxicity Toward Xenopus laevis Tadpoles. NANOMATERIALS 2019; 9:nano9040584. [PMID: 30970633 PMCID: PMC6523888 DOI: 10.3390/nano9040584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
The worldwide increase of graphene family materials raises the question of the potential consequences resulting from their release in the environment and future consequences on ecosystem health, especially in the aquatic environment in which they are likely to accumulate. Thus, there is a need to evaluate the biological and ecological risk but also to find innovative solutions leading to the production of safer materials. This work focuses on the evaluation of functional group-safety relationships regarding to graphene oxide (GO) in vivo genotoxic potential toward X. laevis tadpoles. For this purpose, thermal treatments in H2 atmosphere were applied to produce reduced graphene oxide (rGOs) with different surface group compositions. Analysis performed indicated that GO induced disturbances in erythrocyte cell cycle leading to accumulation of cells in G0/G1 phase. Significant genotoxicity due to oxidative stress was observed in larvae exposed to low GO concentration (0.1 mg·L−1). Reduction of GO at 200 °C and 1000 °C produced a material that was no longer genotoxic at low concentrations. X-ray photoelectron spectroscopy (XPS) analysis indicated that epoxide groups may constitute a good candidate to explain the genotoxic potential of the most oxidized form of the material. Thermal reduction of GO may constitute an appropriate “safer-by-design” strategy for the development of a safer material for environment.
Collapse
|
25
|
Arbo MD, Altknecht LF, Cattani S, Braga WV, Peruzzi CP, Cestonaro LV, Göethel G, Durán N, Garcia SC. In vitro cardiotoxicity evaluation of graphene oxide. Mutat Res 2019; 841:8-13. [PMID: 31138412 DOI: 10.1016/j.mrgentox.2019.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Graphene is a two-dimensional (2D) monolayer of carbon atoms, tightly packed, forming a honey comb crystal lattice, with physical, chemical, and mechanical properties greatly used for energy storage, electrochemical devices, and in nanomedicine. Many studies showed that nanomaterials have side-effects on health. At present, there is a lack of information regarding graphene and its derivatives including their cardiotoxic properties. The aim of the present study was to evaluate the toxicity of nano-graphene oxide (nano-GO) in the rat cardiomyoblast cell line H9c2 and the involvement of oxidative processes. The cell viability was evaluated with the fluorescein diacetate (FDA)/propidium iodide (PI) and in the trypan blue exclusion assay, furthermore mitochondrial membrane potential and production of free radicals were measured. Genotoxicity was evaluated in comet assay and low molecular weight DNA experiment. Reduction of cell viability with 20, 40, 60, 80, and 100 μg/mL nano-GO was observed after 24 h incubation. Besides, nano-GO induced a mitochondrial hyperpolarization and a significant increase of free radicals production in the same concentrations. DNA breaks were observed at 40, 60, 80, and 100 μg/mL. This DNA damage was accompanied by a significant increase in LMW DNA only at 40 μg/mL. In conclusion, the nano-GO caused cardiotoxicity in our in vitro model, with mitochondrial disturbances, generation of reactive species and interactions with DNA, indicating the importance of the further evaluation of the safety of nanomaterials.
Collapse
Affiliation(s)
- Marcelo Dutra Arbo
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Louise F Altknecht
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Shanda Cattani
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Wesley V Braga
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Caroline P Peruzzi
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Larissa V Cestonaro
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Nelson Durán
- Laboratório Nacional de Nanotecnologia - LNNano, Instituto de Quimica-UNICAMP, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Gies V, Lopinski G, Augustine J, Cheung T, Kodra O, Zou S. The impact of processing on the cytotoxicity of graphene oxide. NANOSCALE ADVANCES 2019; 1:817-826. [PMID: 36132263 PMCID: PMC9473239 DOI: 10.1039/c8na00178b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/12/2018] [Indexed: 05/14/2023]
Abstract
In-house prepared graphene oxide (GO) was processed via base washing, sonication, cleaning and combinations of these processing techniques to evaluate the impact on the flake morphology, composition and cytotoxicity of the material. The flakes of unprocessed GO were relatively planar, but upon base washing, the flakes became textured exhibiting many folds and creases observed by AFM. In addition to the pronounced effect on the topography, base washing increased the C/O ratio and increased the cytotoxicity of GO on all four cell lines studied determined via the WST-8 assay. Sonicating the unprocessed and base washed samples resulted in smaller flakes with a similar topography; the base washed flakes lost the texture previously observed upon sonication. The sonicated samples were more toxic than the unprocessed sample, attributed to the smaller flake size, but were interestingly less toxic than the base washed, unsonicated sample despite the base washed unsonicated sample having a larger flake size. This unexpected finding was confirmed by a second analyst using the same, and a different source of GO and resulted in the conclusion that the morphology of GO greatly impacts the cytotoxicity. Cleaning the GO reduced the amount of nitrogen and sulfur impurities in the sample but had no significant impact on the cytotoxicity of the material. It was observed that nutrient depletion via nanomaterial adsorption was not the route of cytotoxicity for the GO samples studied.
Collapse
Affiliation(s)
- Valerie Gies
- Metrology Research Centre, National Research Council Canada 100 Sussex Drive Ottawa Ontario K1A 0R6 Canada
| | - Gregory Lopinski
- Metrology Research Centre, National Research Council Canada 100 Sussex Drive Ottawa Ontario K1A 0R6 Canada
| | - Jerry Augustine
- Metrology Research Centre, National Research Council Canada 100 Sussex Drive Ottawa Ontario K1A 0R6 Canada
- Department of Chemistry and Chemical Biology, McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L8 Canada
| | - Timothy Cheung
- Metrology Research Centre, National Research Council Canada 100 Sussex Drive Ottawa Ontario K1A 0R6 Canada
- Department of Chemistry and Chemical Biology, McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L8 Canada
| | - Oltion Kodra
- Energy, Mining and Environment Research Centre, National Research Council Canada M-12 Ottawa Ontario K1A 0R6 Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council Canada 100 Sussex Drive Ottawa Ontario K1A 0R6 Canada
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa Ontario K1S 5B6 Canada
| |
Collapse
|
27
|
MoS 2 flakes stabilized with DNA/RNA nucleotides: In vitro cell response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:11-22. [PMID: 30948045 DOI: 10.1016/j.msec.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/27/2022]
Abstract
Two-dimensional transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, have recently emerged as nanomaterials with potential use in biomedicine. An attractive means to favor their interaction with biological media is the use of proper biomolecules as exfoliating/dispersing agents. Here, MoS2 flakes were stabilized with different small functional biomolecules such as adenosine monophosphate (AMP), guanosine monophosphate (GMP) and flavin mononucleotide (FMN) through the strong nucleotide-MoS2 interaction of Lewis acid-base type, rather than just on the weak dispersive and hydrophobic forces commonly associated with the use of many surfactants. The impact of the nucleotide-stabilized MoS2 flakes on the viability and cell proliferation, on the production of intracellular reactive oxygen species (ROS), and on the preosteoblast differentiation process (early stage) has been also evaluated, as well as the incorporation and intracellular localization of the nanomaterials by MC3T3-E1 and Saos-2 cells. The nucleotide-stabilized MoS2 flakes were found to exhibit excellent biocompatibility. Furthermore, their incorporation did not affect the integrity of the cell plasma membrane, which makes them ideal candidates for delivering drug/gene directly into cells. The in vitro cell response of tumor cells to these nanomaterials differs from that of undifferentiated cells, which provides the basis for their potential use in cancer therapy.
Collapse
|
28
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|
29
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|
30
|
Gies V, Zou S. Systematic toxicity investigation of graphene oxide: evaluation of assay selection, cell type, exposure period and flake size. Toxicol Res (Camb) 2018; 7:93-101. [PMID: 30090566 PMCID: PMC6061886 DOI: 10.1039/c7tx00278e] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022] Open
Abstract
Understanding the toxicity of nanomaterials is essential for the safe and sustainable development of new applications. This is particularly true for a nanomaterial as widely used as graphene oxide (GO), which is utilized as films for electronics, membranes for filtration, drug carriers and more. Despite this, the current literature presents conflicting results on the overall toxicity of GO. Here, the cytotoxicity of three sizes of commercially available GO was investigated on six cell lines, as values of NOAEL/LOAEL. The effectiveness of four viability assays was also evaluated. The overall toxicity of GO greatly varied between cell lines; the suspension cells showed a greater response to the GO treatment compared to the adherent cell lines. Time dependent cytotoxicity was also cell line dependent, with only one cell line demonstrating obvious dependence. The six cell lines were also tested to evaluate their response to varying GO flake sizes: the suspension/phagocytic cells showed little variation in viability, while a difference was observed for the adherent/non-phagocytic cell lines. By systematically studying the effect of dose, GO size and treatment time for the six cell lines by using commercially available GO samples, we eliminate many of the variables which may result in the conflicting reports on the cytotoxicity of GO in the literature.
Collapse
Affiliation(s)
- V Gies
- Measurement Science and Standards , National Research Council Canada , 100 Sussex Drive , Ottawa , Ontario K1A 0R6 , Canada .
| | - S Zou
- Measurement Science and Standards , National Research Council Canada , 100 Sussex Drive , Ottawa , Ontario K1A 0R6 , Canada .
- Department of Chemistry , Carleton University , 1125 Colonel By Drive , Ottawa , Ontario K1S 5B6 , Canada
| |
Collapse
|
31
|
Lozano O, Torres-Quintanilla A, García-Rivas G. Nanomedicine for the cardiac myocyte: Where are we? J Control Release 2017; 271:149-165. [PMID: 29273321 DOI: 10.1016/j.jconrel.2017.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
Biomedical achievements in the last few decades, leading to successful therapeutic interventions, have considerably improved human life expectancy. Nevertheless, the increasing load and the still suboptimal outcome for patients with cardiac dysfunction underlines the relevance of continuous research to develop novel therapeutics for these diseases. In this context, the field of nanomedicine has attracted a lot of attention due to the potential novel treatment possibilities, such as controlled and sustained release, tissue targeting, and drug protection from degradation. For cardiac myocytes, which constitute the majority of the heart by mass and are the contractile unit, new options have been explored in terms of the use of nanomaterials (NMs) for therapy, diagnosis, and tissue engineering. This review focuses on the advances of nanomedicine targeted to the cardiac myocyte: first presenting the NMs used and the principal cardiac myocyte-based afflictions, followed by an overview of key advances in the field, including NMs interactions with the cardiac myocyte, therapy delivery, diagnosis based on imaging, and tissue engineering for tissue repair and heart-on-a-chip devices.
Collapse
Affiliation(s)
- Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnologico de Monterrey, San Pedro Garza-García, Mexico.
| | - Alejandro Torres-Quintanilla
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico; Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnologico de Monterrey, San Pedro Garza-García, Mexico
| |
Collapse
|