1
|
Kilimci U, Öndeş B, Sunna Ç, Uygun M, Aktaş Uygun D. Development of label-free immunosensors based on AuNPs-fullerene nanocomposites for the determination of cancer antigen 125. Bioelectrochemistry 2025; 163:108863. [PMID: 39642770 DOI: 10.1016/j.bioelechem.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
In this study, gold nanoparticles (AuNPs) were synthesized and combined with fullerene, resulting in the formation of nanocomposite structures. The structures were then characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. The nanostructures were functionalized with MPA and employed for covalent binding of CA125 antibody, whereby the antibody-bound nanocomposite structure was utilized for modification of the surface of the SPE. The surface of the immunosensor was protected by Nafion, and the individual stages of the immunosensor design were characterized by CV and EIS. CA125 determination was conducted using the EIS technique, which revealed a linear concentration range of 1-100 U·mL-1 and a LOD value of 0.016 U·mL-1. The immunosensor demonstrated selective recognition of CEA, NSE, HSA, and IgG proteins, exhibiting good reproducibility. The prepared immunosensor demonstrated 80.9% activity even after a 30-day period. Moreover, this immunosensor can be successfully employed in conventional clinical human serum applications. A comparison with existing literature reveals that the superior features of this immunosensor are its low LOD and high stability. Additionally, the short analysis time in comparison to commercial kits is considered a significant advantage. The prepared immunosensor displays valuable characteristics for the determination of CA125, and it has the potential to be developed for use in health applications.
Collapse
Affiliation(s)
- Ulviye Kilimci
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Turkey
| | - Baha Öndeş
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Turkey
| | - Çağdaş Sunna
- Dokuz Eylül University, Efes Vocational School, Food Technology Department, İzmir, Turkey
| | - Murat Uygun
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Turkey
| | - Deniz Aktaş Uygun
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Turkey.
| |
Collapse
|
2
|
Tantray J, Patel A, Parveen H, Prajapati B, Prajapati J. Nanotechnology-based biomedical devices in the cancer diagnostics and therapy. Med Oncol 2025; 42:50. [PMID: 39828813 DOI: 10.1007/s12032-025-02602-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Nanotechnology has significantly transformed the field of cancer diagnostics and therapeutics by introducing advanced biomedical devices. These nanotechnology-based devices exhibit remarkable capabilities in detecting and treating various cancers, addressing the limitations of traditional approaches, such as limited specificity and sensitivity. This review aims to explore the advancements in nanotechnology-driven biomedical devices, emphasizing their role in the diagnosis and treatment of cancer. Through a comprehensive analysis, we evaluate various nanotechnology-based devices across different cancer types, detailing their diagnostic and therapeutic effectiveness. The review also discusses FDA-approved nanotechnology products, patents, and regulatory trends, highlighting the innovation and clinical impact in oncology. Nanotechnology-based devices, including nanobots, smart pills, and multifunctional nanoparticles, enable precise targeting and treatment, reducing adverse effects on healthy tissues. Devices such as DNA-based nanorobots, quantum dots, and biodegradable stents offer noninvasive diagnostic and therapeutic options, showing high efficacy in preclinical and clinical settings. FDA-approved products underscore the acceptance of these technologies. Nanotechnology-based biomedical devices offer a promising future for oncology, with the potential to revolutionize cancer care through early detection, targeted treatment, and minimal side effects. Continued research and technological improvements are essential to fully realize their potential in personalized cancer therapy.
Collapse
Affiliation(s)
- Junaid Tantray
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Akhilesh Patel
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Hiba Parveen
- Faculty of Pharmacy, Veer Madho Singh Bhandari Uttrakhand Technical University, Dehradun, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jigna Prajapati
- Faculty of Computer Application, Ganpat University, Mehsana, Gujarat, 384012, India.
| |
Collapse
|
3
|
Maafa IM. Potential of Zinc Oxide Nanostructures in Biosensor Application. BIOSENSORS 2025; 15:61. [PMID: 39852112 PMCID: PMC11763625 DOI: 10.3390/bios15010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
The burgeoning field of biosensors has seen significant advancements with the induction of zinc oxide (ZnO) nanostructures, because of their unique structural, electrical, and optical properties. ZnO nanostructures provide numerous benefits for biosensor applications. Their superior electron mobility enables effective electron transfer between the bioreceptor and transducer, enhancing sensitivity and reducing detection limits. Furthermore, ZnO's biocompatibility and non-toxicity make it ideal for in vivo applications, reducing the chances of adverse biological responses. This review paper explores the prospects of ZnO nanostructures in the development of biosensors, focusing on their morphological and structural characteristics. Various synthesis techniques, that include sol-gel, sputtering, and chemical vapor deposition, were successfully employed to prepare different ZnO nanostructures, like nanorods, nanotubes, and nanowires. The various findings in this field underscore the efficacy of ZnO nanostructures in enhancing the specificity and sensitivity of biosensors, presenting a promising avenue for the advancement of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Ibrahim M Maafa
- Department of Chemical Engineering, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
4
|
Wang Y, Talukder N, Nunna BB, Lu M, Tong X, Lee ES. Enhanced Stability and Sensitivity for CA-125 Detection Under Microfluidic Shear Flow Using Polyethylene Glycol-Coated Biosensor. ACS OMEGA 2025; 10:692-702. [PMID: 39829443 PMCID: PMC11740243 DOI: 10.1021/acsomega.4c07596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 01/22/2025]
Abstract
The microfluidic-based point-of-care (POC) diagnostic tool has garnered significant interest in recent years, offering rapid and cost-effective disease detection. There is a growing trend toward integrating microfluidic platforms with biosensors, aligning lab-on-a-chip technologies with POC diagnostic devices. Despite numerous efforts to incorporate biosensors into microfluidic systems, researchers have performed very limited investigations on the stability of biomarker detection when biosensors operate under microfluidic shear flow conditions. Gold nanoparticles (AuNPs) are a widely employed material in capacitive biosensors for antibody immobilization and sensitivity enhancement. However, AuNPs have limitations in providing stable detection of biomarkers within microfluidic shear flow due to their agglomeration nature. This study addresses these limitations by employing 2 kDa polyethylene glycol (PEG) as an intermediate biofunctional layer to immobilize CA-125 antibodies on gold-interdigitated electrodes for the stable and accurate detection of CA-125 antigens. The stabilities and sensitivities of AuNPs and PEG-coated biosensors are evaluated under both static drop and microfluidic shear flow conditions for CA-125 antigen detection. The experimental results demonstrate a capacitive signal response (5660 pF at 10 kHz) 2.2 times higher using the PEG-coated biosensor than the signal (2551 pF at 10 kHz) measured by the AuNP-coated biosensor in the detection of CA-125 antigen-antibody conjugation under static drop conditions, indicating the higher sensitivity of the PEG-coated biosensor. Additionally, the PEG-coated biosensor exhibits better consistency for the CA-125 antigen detection between static drop and microfluidic shear flow conditions (Cp decrease in percentage (ΔCp%↓) = 2.9% at 10 kHz) compared to the electrical signals measured using the AuNP-coated biosensor (ΔCp%↓ = 32.4% at 10 kHz), which suggests that the PEG-coated biosensor demonstrates higher stability for CA-125 antigen detection under microfluidic shear flow conditions. With these significant improvements brought by the PEG-coated biosensor, especially under microfluidic conditions, a substantial hurdle in developing electrical biosensors for POC diagnostic applications has been overcome, expediting further advancements in the field.
Collapse
Affiliation(s)
- Yudong Wang
- Advanced
Energy Systems and Microdevices Laboratory, Department of Mechanical
and Industrial Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Niladri Talukder
- Advanced
Energy Systems and Microdevices Laboratory, Department of Mechanical
and Industrial Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Bharath Babu Nunna
- Department
of Mechanical Engineering, Weber State University, Ogden, Utah 84408, United States
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Harvard
University, Cambridge, Massachusetts 02139, United States
- Harvard Graduate
School of Education, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ming Lu
- The
Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Xiao Tong
- The
Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Eon Soo Lee
- Advanced
Energy Systems and Microdevices Laboratory, Department of Mechanical
and Industrial Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
5
|
Thirumavalavan M, Sukumar K, Sabarimuthu SQ. Trends in green synthesis, pharmaceutical and medical applications of nano ZnO: A review. INORG CHEM COMMUN 2024; 169:113002. [DOI: 10.1016/j.inoche.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
6
|
Ansari AA, Lv R, Gai S, Parchur AK, Solanki PR, Archana, Ansari Z, Dhayal M, Yang P, Nazeeruddin M, Tavakoli MM. ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev 2024; 515:215942. [DOI: 10.1016/j.ccr.2024.215942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Mohamed MM, Gamal H, El-Didamony A, Youssef AO, Elshahat E, Mohamed EH, Attia MS. Polymer-Based Terbium Complex as a Fluorescent Probe for Cancer Antigen 125 Detection: A Promising Tool for Early Diagnosis of Ovarian Cancer. ACS OMEGA 2024; 9:24916-24924. [PMID: 38882142 PMCID: PMC11170746 DOI: 10.1021/acsomega.4c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
A novel photoprobe, Tb-acetylacetone (Tb-ACAC) doped within a modified epoxy cellulose polymer immobilized with CA-125 monoclonal antibody, offers an accurate and highly selective method for early ovarian cancer (OC) diagnosis by detecting cancer antigen 125 (CA-125) in serum samples. This approach leverages quenching of the Tb-ACAC luminescence upon binding to CA-125. Characterization of the photoprobe film through UV-vis and fluorescence measurements confirmed the presence of Tb-ACAC within the polymer matrix. In aqueous solution (pH 6.8, λex = 365 nm), the characteristic emission band of Tb-ACAC at λem = 546.2 nm exhibited significant quenching upon CA-125 binding. This quenching effect enabled the sensitive and specific detection of CA-125 in diverse serum samples from OC patients, demonstrating the applicability, simplicity, and effectiveness of this novel approach.
Collapse
Affiliation(s)
- Magda M Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Hisham Gamal
- Aeromedical Council Laboratories-Ministry of Civil Aviation, Cairo 3753450, Egypt
| | - Akram El-Didamony
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed O Youssef
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Esraa Elshahat
- Clinical Pathology Department, Faculty of Medicine, Ain Sham University, Abbassia, Cairo 11566, Egypt
| | - Ekram H Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk 11837, Egypt
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
8
|
Can F, Akkas T, Bekler SY, Takmakli S, Uzun L, Ozaydin Ince G. Selective determination of an ovarian cancer biomarker at low concentrations with surface imprinted nanotube based chemosensor. Bioelectrochemistry 2024; 157:108655. [PMID: 38310811 DOI: 10.1016/j.bioelechem.2024.108655] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
In this study, an electrochemical chemosensor that utilizes a conductive polymer-based molecularly imprinted polymer (MIP) surface for rapid and reliable determination of CA125 was devised. A novel method has been applied to fabricate CA125 imprinted polypyrrole nanotubes (MI-PPy NT) via vapor deposition polymerization (VDP) as a recognition element for highly selective and sensitive determination of CA125. The chemosensor was prepared by immobilizing MI-PPy NT onto screen-printed gold electrodes (Au-SPE) and the performance of the sensor was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in terms of selectivity, sensitivity, linear dynamic concentration range (LDR) and limit of detection (LOD). The MI-PPy NT@Au-SPE sensor exhibited high sensitivity (68.57 μA per decade) to the CA125 concentration ranging from 0.1 U mL-1 to 100 U mL-1 at an LOD of 0.4 U mL-1 with a correlation coefficient of 0.9922. The developed chemosensors with their novel design combined with a facile fabrication method, prove to be promising as future state-of-the-art biosensors.
Collapse
Affiliation(s)
- Faruk Can
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, 34956 Istanbul, Turkiye
| | - Tugce Akkas
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, 34956 Istanbul, Turkiye
| | - Sevinc Yagmur Bekler
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkiye
| | - Selma Takmakli
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkiye
| | - Lokman Uzun
- Faculty of Science, Department of Chemistry, Hacettepe University, 06800 Ankara, Turkiye
| | - Gozde Ozaydin Ince
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, 34956 Istanbul, Turkiye; Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkiye; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Sabanci University, 34956 Istanbul, Turkiye.
| |
Collapse
|
9
|
Er OF, Kivrak H, Alpaslan D, Dudu TE. One-Step Electrochemical Sensing of CA-125 Using Onion Oil-Based Novel Organohydrogels as the Matrices. ACS OMEGA 2024; 9:17919-17930. [PMID: 38680375 PMCID: PMC11044171 DOI: 10.1021/acsomega.3c09149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
To reduce the high mortality rates caused by ovarian cancer, creating high-sensitivity, quick, basic, and inexpensive methods for following cancer antigen 125 (CA-125) levels in blood tests is of extraordinary significance. CA-125 is known as the exclusive glycoprotein employed in clinical examinations to monitor and diagnose ovarian cancer and detect its relapses as a tumor marker. Elevated concentrations of this antigen are linked to the occurrence of ovarian cancer. Herein, we designed organohydrogels (ONOHs) for identifying the level of CA-125 antigen at fast and high sensitivity with electrochemical strategies in a serum medium. The ONOH structures are synthesized with glycerol, agar, and glutaraldehyde and at distinct ratios of onion oil, and then, the ONOHs are characterized with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Electrochemical measurements are performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) in the absence and presence of CA-125 on the designed ONOHs. For the prepared ONOH-3 electrode, two distinct linear ranges are determined as 0.41-8.3 and 8.3-249.0 U/mL. The limit of quantitation and limit of detection values are calculated as 2.415 and 0.805 μU/mL, respectively, (S/N = 3). These results prove that the developed electrode material has high sensitivity, stability, and selectivity for the detection of the CA-125 antigen. In addition, this study can be reasonable for the practical detection of CA125 in serum, permitting early cancer diagnostics and convenient treatment.
Collapse
Affiliation(s)
- Omer Faruk Er
- Rare
Earth Elements Research Institute, Turkish Energy Nuclear and Mineral
Research Agency, Ankara 06980, Turkey
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| | - Hilal Kivrak
- Department
of Chemical Engineering, Faculty of Engineering and Architectural
Sciences, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center, Eskisehir
Osmangazi University, Eskisehir 26040, Turkey
| | - Duygu Alpaslan
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| | - Tuba Ersen Dudu
- Department
of Chemical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van 65000, Turkey
| |
Collapse
|
10
|
Brasiunas B, Popov A, Lisyte V, Kausaite-Minkstimiene A, Ramanaviciene A. ZnO nanostructures: A promising frontier in immunosensor development. Biosens Bioelectron 2024; 246:115848. [PMID: 38042053 DOI: 10.1016/j.bios.2023.115848] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Abstract
This review addresses the design of immunosensors, which employ ZnO nanostructures. Various methods of modifying ZnO nanostructures with antibodies or antigens are discussed, including covalent and non-covalent approaches and cross-linking techniques. Immunosensors based on different properties of ZnO nanomaterials are described and compared. This article provides a comprehensive review of electrochemical immunosensors based on ZnO nanostructures and various detection techniques, including cyclic voltammetry (CV), differential pulse voltammetry (DPV), photoelectrochemical (PEC) detection, electrochemical impedance spectroscopy (EIS), and other electrochemical methods. In addition, this review article examines the application of optical detection techniques, including photoluminescence (PL) and electrochemiluminescence (ECL), in the development of immunosensors based on ZnO nanostructures.
Collapse
Affiliation(s)
- Benediktas Brasiunas
- NanoTechnas - Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT 03225, Vilnius, Lithuania
| | - Anton Popov
- NanoTechnas - Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT 03225, Vilnius, Lithuania
| | - Viktorija Lisyte
- NanoTechnas - Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT 03225, Vilnius, Lithuania
| | - Asta Kausaite-Minkstimiene
- NanoTechnas - Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT 03225, Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT 03225, Vilnius, Lithuania.
| |
Collapse
|
11
|
Keyvani V, Mollazadeh S, Riahi E, Mahmoudian RA, Anvari K, Avan A. Nanotechnological Advances in the Diagnosis of Gynecological Cancers and Nanotheranostics. Curr Pharm Des 2024; 30:2619-2630. [PMID: 39021196 DOI: 10.2174/0113816128317605240628063731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Gynecological cancers are one of the main causes of female mortality worldwide. Despite the various strategies to reduce mortality and improve quality of life, there are still many deficiencies in the diagnosis and treatment of gynecological cancers. One of the important steps to ensure optimal cancer treatment is the early detection of cancer cells and the use of drugs to reduce toxicity. Due to the increase in systemic toxicity and resistance to traditional and conventional diagnostic methods, new strategies, including nanotechnology, are being used to improve diagnosis and reduce the severity of the disease. Nanoparticles (NPs) provide exciting opportunities to improve Gynecological Cancers (GCs) diagnosis, particularly in the initial stages. In biomedical investigations and clinical settings, NPs can be used to increase the sensitivity and specificity of recognition and/or imaging of GCs with the help of their molecular and cellular processes. To design more efficient diagnostic NPs for gynecological cancer cells or tissues, determining the specific biomarkers is of great importance. NP-based imaging agents are another solution to trace cancer cells. This review highlights the potential of some NP-based diagnostic techniques in GC detection, which could be translated to clinical settings to improve patient care.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | | | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
12
|
Andone BA, Handrea-Dragan IM, Botiz I, Boca S. State-of-the-art and future perspectives in infertility diagnosis: Conventional versus nanotechnology-based assays. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102709. [PMID: 37717928 DOI: 10.1016/j.nano.2023.102709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
According to the latest World Health Organization statistics, around 50 to 80 million people worldwide suffer from infertility, amongst which male factors are responsible for around 20 to 30 % of all infertility cases while 50 % were attributed to the female ones. As it is becoming a recurrent health problem worldwide, clinicians require more accurate methods for the improvement of both diagnosis and treatment schemes. By emphasizing the potential use of innovative methods for the rapid identification of the infertility causes, this review presents the news from this dynamic domain and highlights the benefits brought by emerging research fields. A systematic description of the standard techniques used in clinical protocols for diagnosing infertility in both genders is firstly provided, followed by the presentation of more accurate and comprehensive nanotechnology-related analysis methods such as nanoscopic-resolution imaging, biosensing approaches and assays that employ nanomaterials in their design. Consequently, the implementation of nanotechnology related tools in clinical practice, as recently demonstrated in the selection of spermatozoa, the detection of key proteins in the fertilization process or the testing of DNA integrity or the evaluation of oocyte quality, might confer excellent advantages both for improving the assessment of infertility, and for the success of the fertilization process.
Collapse
Affiliation(s)
- Bianca-Astrid Andone
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Iuliana M Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Hu C, Qin Z, Fu J, Gao Q, Chen C, Tan CS, Li S. Aptamer-based carbohydrate antigen 125 sensor with molybdenum disulfide functional hybrid materials. Anal Biochem 2023; 675:115213. [PMID: 37355027 DOI: 10.1016/j.ab.2023.115213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Epithelial ovarian cancer is a malignant tumor of the female reproductive system with insidious symptoms, aggressiveness, risk of metastasis, and high mortality. Carbohydrate antigen 125 (CA125), a standard biomarker for screening epithelial ovarian cancer, can be applied to track cancer progression and treatment response. Here, we constructed an aptamer-based electrochemical biosensor to achieve sensitive detection of CA125. Molybdenum disulfide (MoS2) was used as the stable layered substrate, combined with the irregular branched structure of gold nanoflowers (AuNFs) to provide the sensing interface with a large specific surface area by one-step electrodeposition AuNFs@MoS2. The simplified electrode modification step increased the stability of the electrode while ensuring excellent electrochemical performance and providing many sulfhydryl binding sites. Then, AuNFs@MoS2/CA125 aptamer/MCH sensor was designed for CA125 detection. Based on AuNFs@MoS2 electrode, CA125 aptamer with sulfhydryl as the sensitive layer was fixed on the electrode by gold sulfur bonds. 6-Mercapto-1-hexanol (MCH) was used to block the electrode and reduce the non-specific adsorption. Finally, DPV analysis was applied for CA125 detection with the range of 0.0001 U/mL to 500 U/mL. Our designed aptamer sensor showed reasonable specificity, reproducibility, and stability. Clinical sample testing also proved the consistency of our sensor with the gold standard in negative/positive judgment. This work demonstrated a novel strategy for integrating nanostructures and biocompatibility to build advanced cancer biomarker sensors with promising applications.
Collapse
Affiliation(s)
- Chang Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Tianjin International Engineering Institute, Tianjin University, Tianjin, 300072, China
| | - Ziyue Qin
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jie Fu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qiya Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Cherie S Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, Sharifi M, Falahati M, Jaragh-Alhadad LA, ten Hagen TLM, Li X. Electrochemical aptasensor based on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnology 2023; 21:136. [PMID: 37101280 PMCID: PMC10131368 DOI: 10.1186/s12951-023-01884-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| | - Afrooz Sepahvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | | | - Timo L. M. ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Herbei EE, Alexandru P, Busila M. Cyclic Voltammetry of Screen-Printed Carbon Electrode Coated with Ag-ZnO Nanoparticles in Chitosan Matrix. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3266. [PMID: 37110102 PMCID: PMC10143143 DOI: 10.3390/ma16083266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
In this paper, the authors describe the fabrication of nanocomposite chitosan-based systems of zinc oxide (ZnO), silver (Ag) and Ag-ZnO. Recently, the development of coated screen-printed electrodes using metal and metal oxide nanoparticles (NPs) for the specific detection and monitoring of different cancer tumors has been obtaining important results. Ag, ZnO NPs and Ag-ZnO prepared by the hydrolysis of zinc acetate blended with a chitosan (CS) matrix were used for the surface modification of screen-printed carbon electrodes (SPCEs) in order to analyze the electrochemical behavior of the typical redox system of a 10 mM potassium ferrocyanide-0.1 M buffer solution (BS). The solutions of CS, ZnO/CS, Ag/CS and Ag-ZnO/CS were prepared in order to modify the carbon electrode surface, and were measured at different scan rates from 0.02 V/s to 0.7 V/s by cyclic voltammetry. The cyclic voltammetry (CV) was performed on a house-built potentiostat (HBP). The cyclic voltammetry of the measured electrodes showed the influence of varying the scan rate. The variation of the scan rate has an influence on the intensity of the anodic and cathodic peak. Both values of currents (anodic and cathodic currents) have higher values for 0.1 V/s (Ia = 22 μA and Ic = -25 μA) compared to the values for 0.06 V/s (Ia = 10 μA and Ic = -14 μA). The CS, ZnO/CS, Ag/CS and Ag-ZnO/CS solutions were characterized using a field emission scanning electron microscopy (FE-SEM) with EDX elemental analysis. The modified coated surfaces of screen-printed electrodes were analyzed using optical microscopy (OM). The present coated carbon electrodes showed a different waveform compared to the voltage applied to the working electrode, depending on the scan rate and chemical composition of the modified electrodes.
Collapse
|
16
|
Ekwujuru EU, Olatunde AM, Klink MJ, Ssemakalu CC, Chili MM, Peleyeju MG. Electrochemical and Photoelectrochemical Immunosensors for the Detection of Ovarian Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4106. [PMID: 37112447 PMCID: PMC10142013 DOI: 10.3390/s23084106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Photoelectrochemical (PEC) sensing is an emerging technological innovation for monitoring small substances/molecules in biological or non-biological systems. In particular, there has been a surge of interest in developing PEC devices for determining molecules of clinical significance. This is especially the case for molecules that are markers for serious and deadly medical conditions. The increased interest in PEC sensors to monitor such biomarkers can be attributed to the many apparent advantages of the PEC system, including an enhanced measurable signal, high potential for miniaturization, rapid testing, and low cost, amongst others. The growing number of published research reports on the subject calls for a comprehensive review of the various findings. This article is a review of studies on electrochemical (EC) and PEC sensors for ovarian cancer biomarkers in the last seven years (2016-2022). EC sensors were included because PEC is an improved EC; and a comparison of both systems has, expectedly, been carried out in many studies. Specific attention was given to the different markers of ovarian cancer and the EC/PEC sensing platforms developed for their detection/quantification. Relevant articles were sourced from the following databases: Scopus, PubMed Central, Web of Science, Science Direct, Academic Search Complete, EBSCO, CORE, Directory of open Access Journals (DOAJ), Public Library of Science (PLOS), BioMed Central (BMC), Semantic Scholar, Research Gate, SciELO, Wiley Online Library, Elsevier and SpringerLink.
Collapse
Affiliation(s)
- Ezinne U. Ekwujuru
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | | | - Michael J. Klink
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Cornelius C. Ssemakalu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Muntuwenkosi M. Chili
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Moses G. Peleyeju
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
- Centre for Academic Development, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| |
Collapse
|
17
|
Electrochemical Immunosensor for the Determination of Antibodies against Prostate-Specific Antigen Based on ZnO Nanostructures. Int J Mol Sci 2023; 24:ijms24065803. [PMID: 36982877 PMCID: PMC10052783 DOI: 10.3390/ijms24065803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
In this study, ZnO nanostructures with different types of morphologies and particle sizes were evaluated and applied for the development of an immunosensor. The first material was composed of spherical, polydisperse nanostructures with a particle size in the range of 10–160 nm. The second was made up of more compact rod-like spherical nanostructures with the diameter of these rods in the range of 50–400 nm, and approximately 98% of the particles were in the range of 20–70 nm. The last sample of ZnO was made up of rod-shaped particles with a diameter of 10–80 nm. These ZnO nanostructures were mixed with Nafion solution and drop-casted onto screen-printed carbon electrodes (SPCE), followed by a further immobilization of the prostate-specific antigen (PSA). The affinity interaction of PSA with monoclonal antibodies against PSA (anti-PSA) was evaluated using the differential pulse voltammetry technique. The limit of detection and limit of quantification of anti-PSA were determined as 1.35 nM and 4.08 nM for compact rod-shaped spherical ZnO nanostructures, and 2.36 nM and 7.15 nM for rod-shaped ZnO nanostructures, respectively.
Collapse
|
18
|
Label-free optical and electrical immunoassays based on lyotropic chromonic liquid crystals: Implications of real-time detection and kinetic analysis. Biosens Bioelectron 2023; 223:115011. [PMID: 36549110 DOI: 10.1016/j.bios.2022.115011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Conventional liquid crystal (LC)-based biosensors utilize predominantly thermotropic LCs as the signal-transducing media, which are less environmentally sustainable compared with lyotropic counterparts. In this study, the nematic phase of the anionic azo dye sunset yellow (SSY), a type of lyotropic chromonic liquid crystals (LCLCs), was employed in the optical and electrical biosensing of bovine serum albumin (BSA) and the cancer biomarker CA125. The optical response observed under a polarizing optical microscope was quantified by image analysis, taking advantage of the specific absorption of SSY. The electrical response derived from the dielectric spectra of SSY provided a new alternative for quantitative bioassay based on nematic LCLCs. The limit of detection (LOD) of the optical and electrical protein assay was ∼10-11- and ∼10-10-g/ml BSA, respectively, whereas that of the optical and electrical immunoassay was 5.97 × 10-11 and 6.02 × 10-12 g/ml for CA125, respectively. Moreover, real-time monitoring and kinetic analysis, which are hardly achievable for the hydrophobic thermotropic LCs, were demonstrated by dispersing CA125 in nematic SSY and subsequently recording the optical response over time during the specific binding between CA125 and the immobilized anti-CA125 antibody. Results from this study further the potential of nematic LCLCs in biosensing, especially in dielectric and real-time detection.
Collapse
|
19
|
Meskher H, Ragdi T, Thakur AK, Ha S, Khelfaoui I, Sathyamurthy R, Sharshir SW, Pandey AK, Saidur R, Singh P, Sharifian Jazi F, Lynch I. A Review on CNTs-Based Electrochemical Sensors and Biosensors: Unique Properties and Potential Applications. Crit Rev Anal Chem 2023; 54:2398-2421. [PMID: 36724894 DOI: 10.1080/10408347.2023.2171277] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon nanotubes (CNTs), are safe, biocompatible, bioactive, and biodegradable materials, and have sparked a lot of attention due to their unique characteristics in a variety of applications, including medical and dye industries, paper manufacturing and water purification. CNTs also have a strong film-forming potential, permitting them to be widely employed in constructing sensors and biosensors. This review concentrates on the application of CNT-based nanocomposites in the production of electrochemical sensors and biosensors. It emphasizes the synthesis and optimization of CNT-based sensors for a range of applications and outlines the benefits of using CNTs for biomolecule immobilization. In addition, the use of molecularly imprinted polymer (MIP)-CNTs in the production of electrochemical sensors is also discussed. The challenges faced by the current CNTs-based sensors, along with some the future perspectives and their future opportunities, are also briefly explained in this paper.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Teqwa Ragdi
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Sohmyung Ha
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Issam Khelfaoui
- School of Insurance and Economics, University of International Business and Economics, Beijing, China
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dammam, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - A K Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
- Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Services, Saveetha University, Chennai, India
- CoE for Energy and Eco-sustainability Research, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Chaumuhan, Uttar Pradesh, India
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Nunez FA, Castro ACH, de Oliveira VL, Lima AC, Oliveira JR, de Medeiros GX, Sasahara GL, Santos KS, Lanfredi AJC, Alves WA. Electrochemical Immunosensors Based on Zinc Oxide Nanorods for Detection of Antibodies Against SARS-CoV-2 Spike Protein in Convalescent and Vaccinated Individuals. ACS Biomater Sci Eng 2023; 9:458-473. [PMID: 36048716 PMCID: PMC9469957 DOI: 10.1021/acsbiomaterials.2c00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2022] [Indexed: 01/11/2023]
Abstract
Even after over 2 years of the COVID-19 pandemic, research on rapid, inexpensive, and accurate tests remains essential for controlling and avoiding the global spread of SARS-CoV-2 across the planet during a potential reappearance in future global waves or regional outbreaks. Assessment of serological responses for COVID-19 can be beneficial for population-level surveillance purposes, supporting the development of novel vaccines and evaluating the efficacy of different immunization programs. This can be especially relevant for broadly used inactivated whole virus vaccines, such as CoronaVac, which produced lower titers of neutralizing antibodies. and showed lower efficacy for specific groups such as the elderly and immunocompromised. We developed an impedimetric biosensor based on the immobilization of SARS-CoV-2 recombinant trimeric spike protein (S protein) on zinc oxide nanorod (ZnONR)-modified fluorine-doped tin oxide substrates for COVID-19 serology testing. Due to electrostatic interactions, the negatively charged S protein was immobilized via physical adsorption. The electrochemical response of the immunosensor was measured at each modification step and characterized by scanning electron microscopy and electrochemical techniques. We successfully evaluated the applicability of the modified ZnONR electrodes using serum samples from COVID-19 convalescent individuals, CoronaVac-vaccinated with or without positive results for SARS-CoV-2 infection, and pre-pandemic samples from healthy volunteers as controls. ELISA for IgG anti-SARS-CoV-2 spike protein was performed for comparison, and ELISA for IgG anti-RBDs of seasonal coronavirus (HCoVs) was used to test the specificity of immunosensor detection. No cross-reactivity with HCoVs was detected using the ZnONR immunosensor, and more interestingly, the sensor presented higher sensitivity when compared to negative ELISA results. The results demonstrate that the ZnONRs/spike-modified electrode displayed sensitive results for convalescents and vaccinated samples and shows excellent potential as a tool for the population's assessment and monitoring of seroconversion and seroprevalence.
Collapse
Affiliation(s)
- Freddy A. Nunez
- Centro de Ciências Naturais e Humanas,
Universidade Federal do ABC, Av. dos Estados, 5001, Santo
André, São Paulo09210-580, Brazil
| | - Ana C. H. Castro
- Centro de Ciências Naturais e Humanas,
Universidade Federal do ABC, Av. dos Estados, 5001, Santo
André, São Paulo09210-580, Brazil
| | - Vivian L. de Oliveira
- Centro de Ciências Naturais e Humanas,
Universidade Federal do ABC, Av. dos Estados, 5001, Santo
André, São Paulo09210-580, Brazil
- Laboratório de Imunologia, LIM19, Instituto do
Coração (InCor), Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo (HCFMUSP), Av. Dr. Arnaldo,
44, São Paulo, São Paulo05403-900, Brazil
| | - Ariane C. Lima
- Departamento de Clínica Médica, Disciplina
de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade
de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, São
Paulo01246-903, Brazil
| | - Jamille R. Oliveira
- Departamento de Clínica Médica, Disciplina
de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade
de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, São
Paulo01246-903, Brazil
| | - Giuliana X. de Medeiros
- Departamento de Clínica Médica, Disciplina
de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade
de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, São
Paulo01246-903, Brazil
| | - Greyce L. Sasahara
- Laboratório de Imunologia, LIM19, Instituto do
Coração (InCor), Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo (HCFMUSP), Av. Dr. Arnaldo,
44, São Paulo, São Paulo05403-900, Brazil
| | - Keity S. Santos
- Laboratório de Imunologia, LIM19, Instituto do
Coração (InCor), Hospital das Clínicas da Faculdade de
Medicina da Universidade de São Paulo (HCFMUSP), Av. Dr. Arnaldo,
44, São Paulo, São Paulo05403-900, Brazil
- Departamento de Clínica Médica, Disciplina
de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade
de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, São
Paulo01246-903, Brazil
| | - Alexandre J. C. Lanfredi
- Centro de Engenharia, Modelagem e Ciências
Sociais Aplicadas, Universidade Federal do ABC, Av. dos
Estados, 5001, Santo André, São Paulo09210-580,
Brazil
| | - Wendel A. Alves
- Centro de Ciências Naturais e Humanas,
Universidade Federal do ABC, Av. dos Estados, 5001, Santo
André, São Paulo09210-580, Brazil
| |
Collapse
|
21
|
Pourmadadi M, Moammeri A, Shamsabadipour A, Moghaddam YF, Rahdar A, Pandey S. Application of Various Optical and Electrochemical Nanobiosensors for Detecting Cancer Antigen 125 (CA-125): A Review. BIOSENSORS 2023; 13:99. [PMID: 36671934 PMCID: PMC9856029 DOI: 10.3390/bios13010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, diagnosing early-stage cancers can be vital for saving patients and dramatically decreases mortality rates. Therefore, specificity and sensitivity in the detection of cancer antigens should be elaborately ensured. Some early-stage cancers can be diagnosed via detecting the cancer antigen CA-125, such as ovarian cancer, and required treatments can be applied more efficiently. Thus, detection of CA-125 by employing various optical or electrochemical biosensors is a preliminary and crucial step to treating cancers. In this review, a diverse range of optical and electrochemical means of detecting CA-125 are reviewed. Furthermore, an applicable comparison of their performance and sensitivity is provided, several commercial detection kits are investigated, and their applications are compared and discussed to determine whether they are applicable and accurate enough.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
22
|
Ding H, Zhang J, Zhang F, Xu Y, Liang W, Yu Y. Nanotechnological approaches for diagnosis and treatment of ovarian cancer: a review of recent trends. Drug Deliv 2022; 29:3218-3232. [PMID: 36259505 PMCID: PMC9586634 DOI: 10.1080/10717544.2022.2132032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formulations from nanotechnology platform promote therapeutic drug delivery and offer various advantages such as biocompatibility, non-inflammatory effects, high therapeutic output, biodegradability, non-toxicity, and biocompatibility in comparison with free drug delivery. Due to inherent shortcomings of conventional drug delivery to cancerous tissues, alternative nanotechnological-based approaches have been developed for such ailments. Ovarian cancer is the leading gynecological cancer with higher mortality rates due to its reoccurrence and late diagnosis. In recent years, the field of medical nanotechnology has witnessed significant progress in addressing existing problems and improving the diagnosis and therapy of various diseases including cancer. Nevertheless, the literature and current reviews on nanotechnology are mainly focused on its applications in other cancers or diseases. In this review, we focused on the nanoscale drug delivery systems for ovarian cancer targeted therapy and diagnosis, and different nanocarriers systems including dendrimers, nanoparticles, liposomes, nanocapsules, and nanomicelles for ovarian cancer have been discussed. In comparison to non-functionalized counterparts of nanoformulations, the therapeutic potential and preferential targeting of ovarian cancer through ligand functionalized nanoformulations’ development has been reviewed. Furthermore, numerous biomarkers such as prostatic, mucin 1, CA-125, apoptosis repeat baculoviral inhibitor-5, human epididymis protein-4, and e-cadherin have been identified and elucidated in this review for the assessment of ovarian cancer. Nanomaterial biosensor-based tumor markers and their various types for ovarian cancer diagnosis are explained in this article. In association, different nanocarrier approaches for the ovarian cancer therapy have also been underpinned. To ensure ovarian cancer control and efficient detection, there is an urgent need for faster and less costly medical tools in the arena of oncology.
Collapse
Affiliation(s)
- Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital, Shaoxing University, Shaoxing, China
| | - Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital, Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital, Shaoxing University, Shaoxing, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Yijun Yu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
23
|
Erkmen C, Tığ GA, Uslu B. Nanomaterial-based sandwich-type electrochemical aptasensor platform for sensitive voltammetric determination of leptin. Mikrochim Acta 2022; 189:396. [PMID: 36173490 DOI: 10.1007/s00604-022-05487-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
A sandwich-type electrochemical aptasensor was designed for sensitive detection of leptin in biological samples, including human serum and human plasma. The developed aptasensor was produced by electrodeposition of gold nanoparticles on a screen-printed electrode modified with zinc oxide nanoparticles. The synergy effect of zinc oxide and gold nanoparticles improved the electrocatalytic activity of the aptasensor. The obtained high surface area allowed more aptamer molecules to be loaded on the electrode surface. Signal amplification significantly increases the detection sensitivity of a developed biosensor. Although the use of nanomaterials is the most preferred detection tool for this purpose, as an alternative, enzyme-catalyzed signal amplification is widely used in the construction of a biosensor due to its specificity and high catalytic efficiency. Therefore, both nanomaterial-supported and an alkaline phosphatase-based aptasensor design were developed, which can produce in situ electroactive product by enzymatic hydrolysis of the inactive substrate to achieve a higher signal-to-background ratio. Under optimal conditions, the developed aptasensor exhibited a wide linear concentration range from 0.01 pg mL-1 to 100.0 pg mL-1 with a detection limit of 0.0035 pg mL-1. While the developed aptasensor provided excellent selectivity in the presence of some interfering compounds, it possessed outstanding reproducibility and stability. In addition, the developed aptasensor has been applied with good recoveries in the range 96.31 to 108.79% in human serum and plasma samples. In conclusion, all the obtained results showed the feasibility of the developed aptasensor for practical applications.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.,The Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Gözde Aydoğdu Tığ
- Department of Chemistry, Faculty of Science, Ankara University, 06100, Ankara, Turkey.
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
| |
Collapse
|
24
|
Electrochemical Immunosensor Modified with Nitrogen-Doped Reduced Graphene Oxide@Carboxylated Multi-Walled Carbon Nanotubes/Chitosan@Gold Nanoparticles for CA125 Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lung cancer is one of the malignant tumors with the highest mortality rate, and the detection of its tumor marker carcinoma antigen 125 (CA125) is significant. Here, an electrochemical immunoassay for CA125 was described. Nitrogen-doped reduced graphene oxide (N-rGO), carboxylated multi-walled carbon nanotubes (CMWCNTs) and gold nanoparticles (AuNPs) were applied to co-modify glassy carbon electrode (GCE), after incubation with Anti-CA125, the modified electrode was employed for the specific detection of CA125. The N-rGO@CMWCNTs (Nitrogen-doped reduced graphene oxide@carboxylated multi-walled carbon nanotubes) were used as a matrix, while CS@AuNPs (Chitosan@gold nanoparticles) with high conductivity and biocompatibility was immobilized on it through the reaction between carboxyl groups from CMWCNTs and amino groups, hydroxyl groups from chitosan (CS), resulting in the effect of double signal amplification. The immunosensor demonstrated excellent electrochemical performance with a linear detection range of 0.1 pg mL−1–100 ng mL−1, and the detection limit was as low as 0.04 pg mL−1 (S/N = 3). It had been verified that this method had good precision and high accuracy, and the immunosensor could remain stable for 10 days. This research provided a new method for the detection of CA125 in serum.
Collapse
|
25
|
Manasa G, Mascarenhas RJ, Shetti NP, Malode SJ, Aminabhavi TM. Biomarkers for Early Diagnosis of Ovarian Carcinoma. ACS Biomater Sci Eng 2022; 8:2726-2746. [PMID: 35762531 DOI: 10.1021/acsbiomaterials.2c00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The leading cause of gynecological cancer-related morbidity and mortality is ovarian cancer (OC), which is dubbed a silent killer. Currently, OC is a target of intense biomarker research, because it is often not discovered until the disease is advanced. The goal of OC research is to develop effective tests using biomarkers that can detect the disease at the earliest stages, which would eventually decrease the mortality, thereby preventing recurrence. Therefore, there is a pressing need to revisit the existing biomarkers to recognize the potential biomarkers that can lead to efficient predictors for the OC diagnosis. This Perspective covers an update on the currently available biomarkers used in the triaging of OC to gain certain insights into the potential role of these biomarkers and their estimation that are crucial to the understanding of neoplasm progression, diagnostics, and therapy.
Collapse
Affiliation(s)
- G Manasa
- Electrochemistry Research Group, St. Joseph's College, Lalbagh Road, Bangalore - 560027, Karnataka, India
| | - Ronald J Mascarenhas
- Electrochemistry Research Group, St. Joseph's College, Lalbagh Road, Bangalore - 560027, Karnataka, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidhyanagar, Hubballi - 580031, Karnataka, India
| | - Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidhyanagar, Hubballi - 580031, Karnataka, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidhyanagar, Hubballi - 580031, Karnataka, India
| |
Collapse
|
26
|
Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM, Alanazi FG, Goh BH, Gupta G, Paudel KR, Hansbro PM, Chellappan DK, Singh SK. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Pharmacotherapy 2022; 150:112951. [PMID: 35447546 DOI: 10.1016/j.biopha.2022.112951] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
The current advancements in nanotechnology are as an outcome of the development of engineered nanoparticles. Various metallic nanoparticles have been extensively explored for various biomedical applications. They attract lot of attention in biomedical field due to their significant inert nature, and nanoscale structures, with size similar to many biological molecules. Their intrinsic characteristics which include electronic, optical, physicochemical and, surface plasmon resonance, that can be changed by altering certain particle characteristics such as size, shape, environment, aspect ratio, ease of synthesis and functionalization properties have led to numerous applications in various fields of biomedicine. These include targeted drug delivery, sensing, photothermal and photodynamic therapy, imaging, as well as the modulation of two or three applications. The current article also discusses about the various properties of metallic nanoparticles and their applications in cancer imaging and therapeutics. The associated bottlenecks related to their clinical translation are also discussed.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | | | - Fayez Ghadeer Alanazi
- Lemon Pharmacies, Eastern region, Kingdom of Saudi Arabia, Hafr Al Batin 39957, Saudi Arabia
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia
| | - Philip M Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
27
|
Multiplex Digital Quantification of β-Lactamase Genes in Antibiotic-Resistant Bacteria by Counting Gold Nanoparticle Labels on Silicon Microchips. BIOSENSORS 2022; 12:bios12040226. [PMID: 35448287 PMCID: PMC9024738 DOI: 10.3390/bios12040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
Digital quantification based on counting of individual molecules is a promising approach for different biomedical applications due to its enhanced sensitivity. Here, we present a method for the digital detection of nucleic acids (DNA and RNA) on silicon microchips based on the counting of gold nanoparticles (GNPs) in DNA duplexes by scanning electron microscopy (SEM). Biotin-labeled DNA is hybridized with capture oligonucleotide probes immobilized on the microchips. Then biotin is revealed by a streptavidin–GNP conjugate followed by the detection of GNPs. Sharp images of each nanoparticle allow the visualization of hybridization results on a single-molecule level. The technique was shown to provide highly sensitive quantification of both short oligonucleotide and long double-strand DNA sequences up to 800 bp. The lowest limit of detection of 0.04 pM was determined for short 19-mer oligonucleotide. The method’s applicability was demonstrated for the multiplex quantification of several β-lactamase genes responsible for the development of bacterial resistance against β-lactam antibiotics. Determination of nucleic acids is effective for both specific DNA in lysates and mRNA in transcripts. The method is also characterized by high selectivity for single-nucleotide polymorphism discrimination. The proposed principle of digital quantification is a perspective for studying the mechanisms of bacterial antibiotic resistance and bacterial response to drugs.
Collapse
|
28
|
Patella B, Moukri N, Regalbuto G, Cipollina C, Pace E, Di Vincenzo S, Aiello G, O’Riordan A, Inguanta R. Electrochemical Synthesis of Zinc Oxide Nanostructures on Flexible Substrate and Application as an Electrochemical Immunoglobulin-G Immunosensor. MATERIALS (BASEL, SWITZERLAND) 2022; 15:713. [PMID: 35160668 PMCID: PMC8837124 DOI: 10.3390/ma15030713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Immunoglobulin G (IgG), a type of antibody, represents approximately 75% of serum antibodies in humans, and is the most common type of antibody found in blood circulation. Consequently, the development of simple, fast and reliable systems for IgG detection, which can be achieved using electrochemical sandwich-type immunosensors, is of considerable interest. In this study we have developed an immunosensor for human (H)-IgG using an inexpensive and very simple fabrication method based on ZnO nanorods (NRs) obtained through the electrodeposition of ZnO. The ZnO NRs were treated by electrodepositing a layer of reduced graphene oxide (rGO) to ensure an easy immobilization of the antibodies. On Indium Tin Oxide supported on Polyethylene Terephthalate/ZnO NRs/rGO substrate, the sandwich configuration of the immunosensor was built through different incubation steps, which were all optimized. The immunosensor is electrochemically active thanks to the presence of gold nanoparticles tagging the secondary antibody. The immunosensor was used to measure the current density of the hydrogen development reaction which is indirectly linked to the concentration of H-IgG. In this way the calibration curve was constructed obtaining a logarithmic linear range of 10-1000 ng/mL with a detection limit of few ng/mL and good sensitivity.
Collapse
Affiliation(s)
- Bernardo Patella
- Dipartimento di Ingegneria, Università degli Studi di Palermo, 90128 Palermo, Italy; (B.P.); (N.M.); (G.R.); (G.A.)
| | - Nadia Moukri
- Dipartimento di Ingegneria, Università degli Studi di Palermo, 90128 Palermo, Italy; (B.P.); (N.M.); (G.R.); (G.A.)
| | - Gaia Regalbuto
- Dipartimento di Ingegneria, Università degli Studi di Palermo, 90128 Palermo, Italy; (B.P.); (N.M.); (G.R.); (G.A.)
| | - Chiara Cipollina
- Fondazione Ri.MED, 90133 Palermo, Italy;
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB)-Consiglio Nazionale delle Ricerche, 90153 Palermo, Italy; (E.P.); (S.D.V.)
| | - Elisabetta Pace
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB)-Consiglio Nazionale delle Ricerche, 90153 Palermo, Italy; (E.P.); (S.D.V.)
| | - Serena Di Vincenzo
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB)-Consiglio Nazionale delle Ricerche, 90153 Palermo, Italy; (E.P.); (S.D.V.)
| | - Giuseppe Aiello
- Dipartimento di Ingegneria, Università degli Studi di Palermo, 90128 Palermo, Italy; (B.P.); (N.M.); (G.R.); (G.A.)
| | - Alan O’Riordan
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland;
| | - Rosalinda Inguanta
- Dipartimento di Ingegneria, Università degli Studi di Palermo, 90128 Palermo, Italy; (B.P.); (N.M.); (G.R.); (G.A.)
| |
Collapse
|
29
|
Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int J Biol Macromol 2022; 195:356-383. [PMID: 34920057 DOI: 10.1016/j.ijbiomac.2021.12.052] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
As well-appreciated biomarkers, tumor markers have been spotlighted as reliable tools for predicting the behavior of different tumors and helping clinicians ascertain the type of molecular mechanism of tumorigenesis. The sensitivity and specificity of these markers have made them an object of even broader interest for sensitive detection and staging of various cancers. Enzyme-linked immunosorbent assay (ELISA), fluorescence-based, mass-based, and electrochemical-based detections are current techniques for sensing tumor markers. Although some of these techniques provide good selectivity, certain obstacles, including a low sample concentration or difficulty carrying out the measurement, limit their application. With the advent of nanotechnology, many studies have been carried out to synthesize and employ nanomaterials (NMs) in sensing techniques to determine these tumor markers at low concentrations. The fabrication, sensitivity, design, and multiplexing of sensing techniques have been uplifted due to the attractive features of NMs. Various NMs, such as magnetic and metal nanoparticles, up-conversion NPs, carbon nanotubes (CNTs), carbon-based NMs, quantum dots (QDs), and graphene-based nanosensors, hyperbranched polymers, optical nanosensors, piezoelectric biosensors, paper-based biosensors, microfluidic-based lab-on-chip sensors, and hybrid NMs have proven effective in detecting tumor markers with great sensitivity and selectivity. This review summarizes various categories of NMs for detecting these valuable markers, such as prostate-specific antigen (PSA), human carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA125), cancer antigen 15-3 (CA15-3, MUC1), and cancer antigen 19-9 (CA19-9), and highlights recent nanotechnology-based advancements in detection of these prognostic biomarkers.
Collapse
|
30
|
Farías ME, Correa NM, Sosa L, Niebylski AM, Molina PG. A simple electrochemical immunosensor for sensitive detection of transgenic soybean protein CP4-EPSPS in seeds. Talanta 2022; 237:122910. [PMID: 34736647 DOI: 10.1016/j.talanta.2021.122910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Soybean is the most produced crop in Argentina, and 99 % corresponds to genetically modified soybean. One of the main produced varieties is Roundup Ready® soybean (RR), which was modified to express the enzyme CP4 5-enolpyruvylshikimate 3-phosphate synthase (CP4 EPSPS), which confers resistance to glyphosate, the main herbicide worldwide used. The possible impact of genetically modified organisms (GMO) has generated public concerns, thus increasing interest in the development of GMOs detection devices. In this work, an electrochemical immunosensor for CP4 EPSPS detection in soybean seeds was obtained, by using a gold electrode modified with an anti-CP4 EPSPS polyclonal antibody produced in our laboratory. The presented immunosensor resulted in a simple, low-cost, fast, and reproducible device. Also, labeling and/or signal amplification system was not necessary, since the sensor showed high sensibility with a low detection limit (lower at 0,038 % RR soybean, 38 ng mL-1 CP4 EPSPS).
Collapse
Affiliation(s)
- Marcos E Farías
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - Lucas Sosa
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Argentina; Instituto de Biotecnologia Ambiental y Salud (INBIAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - Ana M Niebylski
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Argentina; Instituto de Biotecnologia Ambiental y Salud (INBIAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina
| | - Patricia G Molina
- Departamento de Química, Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3. C.P, X5804BYA, Río Cuarto, Argentina.
| |
Collapse
|
31
|
Er OF, Kivrak H, Ozok O, Çelik S, Kivrak A. A novel electrochemical sensor for monitoring ovarian cancer tumor protein CA 125 on benzothiophene derivative based electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
He G, Zhou Y, Li M, Guo Y, Yin H, Yang B, Zhang S, Liu Y. Bioinspired Synthesis of ZnO@polydopamine/Au for Label-Free Photoelectrochemical Immunoassay of Amyloid-β Protein. Front Bioeng Biotechnol 2021; 9:777344. [PMID: 34869291 PMCID: PMC8637201 DOI: 10.3389/fbioe.2021.777344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023] Open
Abstract
Amyloid-β protein (Aβ) is an important biomarker and plays a key role in the early stage of Alzheimer's disease (AD). Here, an ultrasensitive photoelectrochemical (PEC) sensor based on ZnO@polydopamine/Au nanocomposites was constructed for quantitative detection of Aβ. In this sensing system, the ZnO nanorod array decorated with PDA films and gold nanoparticles (Au NPs) have excellent visible-light activity. The PDA film was used as a sensitizer for charge separation, and it also was used for antibody binding. Moreover, Au NPs were loaded on the surface of PDA film by in situ deposition, which further improved the charge transfer efficiency and the PEC activity in visible light due to the localized surface plasmon resonance effect of Au NPs. Therefore, in ZnO@polydopamine/Au nanocomposites, a significantly enhanced photocurrent response was obtained on this photoelectrode, which provides a good and reliable signal for early detection of AD. Under the optimized conditions, the PEC immunosensor displayed a wide linear range from 1 pg/mL to 100 ng/mL and a low detection limit of 0.26 pg/mL. In addition, this PEC immunosensor also presented good selectivity, stability, and reproducibility. This work may provide a promising point-of-care testing method toward advanced PEC immunoassays for AD biomarkers.
Collapse
Affiliation(s)
- Guangli He
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Yue Zhou
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Mifang Li
- Shenzhen Longgang Central Hospital (The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
| | - Yanzhen Guo
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Hang Yin
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Baocheng Yang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, China
| | - Yibiao Liu
- Shenzhen Longgang Central Hospital (The Second Affiliated Hospital of the Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
33
|
rGO based immunosensor amplified using MWCNT and CNF nanocomposite as analytical tool for CA125 detection. Anal Biochem 2021; 634:114393. [PMID: 34597616 DOI: 10.1016/j.ab.2021.114393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/04/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
The electrochemical performance of dual layer immunosensor has been studied by employing reduced Graphene oxide (rGO) and its nanocomposites with Carbon Nanofibers (CNFs) and Carbon Nanotubes (CNTs) as supporting matrix for the detection of CA125. The immunosensor determination was based on the formation of antibody - antigen immunocomplex, a decrement in the current response was observed in accordance with the concentration of antigen. Better performance exhibited by rGO/CNF in terms of linearity (99%) and sensitivity 0.65 μA (μg mL-1)-1 can be attributed to its conductivity and surface area. The nanocomposite are employed in the detection of CA125 with linear working range of 10-32 × 10-4 μg mL-1, the limit of detection is found to be 0.28 pg mL-1 rGO nanocomposite with CNT (rGO/CNT) is studied as transducer material. rGO/CNT exhibited better linearity when compared to rGO due to its good conductivity. Thus, graphene nanocomposite transducer materials have vital application in detection of oncomarkers.
Collapse
|
34
|
Abou-Omar MN, Attia MS, Afify HG, Amin MA, Boukherroub R, Mohamed EH. Novel Optical Biosensor Based on a Nano-Gold Coated by Schiff Base Doped in Sol/Gel Matrix for Sensitive Screening of Oncomarker CA-125. ACS OMEGA 2021; 6:20812-20821. [PMID: 34423189 PMCID: PMC8374908 DOI: 10.1021/acsomega.1c01974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 05/07/2023]
Abstract
The urge for sensitive, facile, minimally invasive, and fast detection method of CA-125, a significant and crucial biomarker in ovarian malignancy, is currently substantial. This paper describes the detailed construction and characterization of a newly designed optical nano-biosensor to detect CA-125 accurately and sensitively. The fabricated sensor consists of a nano-gold thin film doped into a matrix of sol-gel, exhibiting a centered fluorescence band at 423 nm when excited at 340 nm. The quantification of CA-125 relies on its quenching ability of this fluorescence signal. The sensor was challenged to evaluate its sensitivity and specificity in detecting CA-125 present in samples collected from ovarian cancer diagnosed patients and compared to samples from healthy women as a control. Our findings revealed that the developed biosensor had a sensitivity of 97.35% and a specificity of 94.29%. Additionally, a wide linearity range over 2.0-127.0 U mL-1 for CA-125 was achieved with a detection limit of 1.45 U mL-1. Furthermore, the sensor could successfully discriminate samples between healthy and diseased people, which demonstrates its suitability in CA-125 assessment.
Collapse
Affiliation(s)
- Mona N. Abou-Omar
- Department
of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 13013, Egypt
| | - Mohamed S. Attia
- Chemistry
Department, Faculty of Science, Ain Shams
University, Cairo 11566, Egypt
| | - Hisham G. Afify
- Department
of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 13013, Egypt
| | - Mohammed A. Amin
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Rabah Boukherroub
- Univ.
Lille, CNRS, Centrale Lille, Univ. Polytechnique
Hauts-de-France, UMR 8520 − IEMN, F-59000 Lille, France
| | - Ekram H. Mohamed
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, The British University in Egypt, 11837 El Sherouk City, Cairo, Egypt
| |
Collapse
|
35
|
Electrochemical detection of CA125 using thionine and gold nanoparticles supported on heteroatom-doped graphene nanocomposites. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Li S, Hu C, Chen C, Zhang J, Bai Y, Tan CS, Ni G, He F, Li W, Ming D. Molybdenum Disulfide Supported on Metal–Organic Frameworks as an Ultrasensitive Layer for the Electrochemical Detection of the Ovarian Cancer Biomarker CA125. ACS APPLIED BIO MATERIALS 2021; 4:5494-5502. [DOI: 10.1021/acsabm.1c00324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chang Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jiawei Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yongchang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Cherie S. Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Feng He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Weifeng Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin International Engineering Institute, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
37
|
Torres-Rivero K, Florido A, Bastos-Arrieta J. Recent Trends in the Improvement of the Electrochemical Response of Screen-Printed Electrodes by Their Modification with Shaped Metal Nanoparticles. SENSORS 2021; 21:s21082596. [PMID: 33917220 PMCID: PMC8067965 DOI: 10.3390/s21082596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022]
Abstract
Novel sensing technologies proposed must fulfill the demands of wastewater treatment plants, the food industry, and environmental control agencies: simple, fast, inexpensive, and reliable methodologies for onsite screening, monitoring, and analysis. These represent alternatives to conventional analytical methods (ICP-MS and LC-MS) that require expensive and non-portable instrumentation. This needs to be controlled by qualified technicians, resulting moreover in a long delay between sampling and high-cost analysis. Electrochemical analysis based on screen-printed electrodes (SPEs) represents an excellent miniaturized and portable alternative due to their disposable character, good reproducibility, and low-cost commercial availability. SPEs application is widely extended, which makes it important to design functionalization strategies to improve their analytical response. In this sense, different types of nanoparticles (NPs) have been used to enhance the electrochemical features of SPEs. NPs size (1–100 nm) provides them with unique optical, mechanical, electrical, and chemical properties that give the modified SPEs increased electrode surface area, increased mass-transport rate, and faster electron transfer. Recent progress in nanoscale material science has led to the creation of reproducible, customizable, and simple synthetic procedures to obtain a wide variety of shaped NPs. This mini-review attempts to present an overview of the enhancement of the electrochemical response of SPEs when NPs with different morphologies are used for their surface modification
Collapse
Affiliation(s)
- Karina Torres-Rivero
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Antonio Florido
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Julio Bastos-Arrieta
- Grup de Biotecnologia Molecular i Industrial, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Edifici Gaia TR14, 08222 Terrassa, Spain
- Correspondence:
| |
Collapse
|
38
|
Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. EMERGENT MATERIALS 2021; 4:75-99. [PMID: 33615140 PMCID: PMC7881345 DOI: 10.1007/s42247-021-00168-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the recent outbreak of coronavirus 2019 (COVID-19). Although nearly two decades have passed since the emergence of pandemics such as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), no effective drug against the CoV family has yet been approved, so there is a need to find newer therapeutic targets. Currently, simultaneous research across the globe is being performed to discover efficient vaccines or drugs, including both conventional therapies used to treat previous similar diseases and emerging therapies like nanomedicine. Nanomedicine has already proven its value through its application drug delivery and nanosensors in other diseases. Nanomedicine and its components can play an important role in various stages of prevention, diagnosis, treatment, vaccination, and research related to COVID-19. Nano-based antimicrobial technology can be integrated into personal equipment for the greater safety of healthcare workers and people. Various nanomaterials such as quantum dots can be used as biosensors to diagnose COVID-19. Nanotechnology offers benefits from the use of nanosystems, such as liposomes, polymeric and lipid nanoparticles, metallic nanoparticles, and micelles, for drug encapsulation, and facilitates the improvement of pharmacological drug properties. Antiviral functions for nanoparticles can target the binding, entry, replication, and budding of COVID-19. The toxicity-related inorganic nanoparticles are one of the limiting factors of its use that should be further investigated and modified. In this review, we are going to discuss nanomedicine options for COVID-19 management, similar applications for related viral diseases, and their gap of knowledge.
Collapse
Affiliation(s)
- Farzan Vahedifard
- Altman Clinical and Translational Research Institute, University of California San Diego Health Center, San Diego, CA USA
| | - Krishnan Chakravarthy
- Division of Pain Medicine, Department of Anesthesiology, University of California San Diego Health Center, 9400 Campus Point Dr, La Jolla, San Diego, CA USA
| |
Collapse
|
39
|
Shen R, Zhang J, Huang W, Wu S, Li G, Zou S, Ling L. Dynamic light scattering and fluorescence dual-signal sensing of cancer antigen-125 via recognition of the polymerase chain reaction product with gold nanoparticle probe. Anal Chim Acta 2021; 1145:87-94. [PMID: 33453884 DOI: 10.1016/j.aca.2020.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022]
Abstract
Cancer antigen 125 (CA - 125) is an important biomarker for the diagnosis of ovarian cancer. In this paper, oligonucleotide 5'-GACAGGCCCGAAGGAATAGATAATACGACTCACTATAGGGAGACAAGAATAAACGCTCAA-3' (oligo 1) contains an aptamer of CA - 125, and was designed partly complementary to oligonucleotide 5'-CTCTCTCTCCACCTTCTTCTTTGAGCGTTTATTCTTGTCT-3' (oligo 2). Oligo 1 · oligo 2 was extended with the Klenow fragment (exo-) polymerase for further polymerase chain reaction (PCR) processes in the presence of two primers: deoxyribose nucleoside triphosphate and Taq polymerase. Single-stranded DNA was produced at two sides of the PCR product by introducing a C18 spacer into the two primers, which could hybridize with AuNPs-DNA probes, investigated by dynamic light scattering and fluorescence. The addition of CA - 125 can interrupt the hybridization between oligo 1 and oligo 2, causing the average diameter of AuNPs-DNA probes to decrease with the increase of CA-125 within the range of 5 fg mL-1 - 50 ng mL-1. The linear regression equation of this relationship was D = 430.48-49.60 log10C, with a detection limit of 1.1 fg mL-1. Fluorescein molecules were modified at the end of the forward primer. The fluorescence intensity of the PCR product can be measured simultaneously, with the fluorescence intensity increasing linearly with the logarithm of CA-125 concentration within a linear range from 10 fg mL-1 to 50 ng mL-1, with a detection limit of 1.5 fg mL-1.
Collapse
Affiliation(s)
- Ruidi Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ji Zhang
- Department of Neurosurgery, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenxiu Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shaoyong Wu
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Seyin Zou
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, 466 Middle Newport Road, Haizhu District, Guangzhou, 510317, China.
| | - Liansheng Ling
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
40
|
Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci 2020; 266:118914. [PMID: 33340527 DOI: 10.1016/j.lfs.2020.118914] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
To overcome the drawbacks of conventional delivery, this review spotlights a number of nanoscale drug delivery systems, including nanoparticles, liposomes, nano micelles, branched dendrimers, nanocapsules, and nanostructured lipid formulations for the targeted therapy of ovarian cancer. These nanoformulations offer numerous advantages to promote therapeutic drug delivery such as nontoxicity, biocompatibility, good biodegradability, increased therapeutic impact than free drugs, and non-inflammatory effects. Importantly, the development of specific ligands functionalized nanoformulations enable preferential targeting of ovarian tumors and eventually amplify the therapeutic potential compared to nonfunctionalized counterparts. Ovarian cancer is typically identified by biomarker assessment such as CA125, HE4, Mucin 1, and prostatic. There is, nevertheless, a tremendous demand for less costly, faster, and compact medical tools, both for timely detection and ovarian cancer control. This paper explored multiple types of tumor marker-based on nanomaterial biosensors. Initially, we mention different forms of ovarian cancer biomarkers involving CA125, human epididymis protein 4 (HE4), mucin 1 (MUC1), and prostate. It is accompanied by a brief description of new nanotechnology methods for diagnosis. Nanobiosensors for evaluating ovarian cancer biomarkers can be categorized based on electrochemical, optical, paper-based, giant magnetoresistive, and lab-on-a-chip devices.
Collapse
|
41
|
Wang FM, Huang SH, Yuan CC, Yeh CT, Chen WL, Wang XC, Runprapan N, Tsai YJ, Chuang YL, Su CH. Detection of O-glycosylated CA125 by using an electrochemical immunosensor for ovarian cancer diagnosis. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01477-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Multiplexed label-free electrochemical immunosensor for breast cancer precision medicine. Anal Chim Acta 2020; 1130:60-71. [DOI: 10.1016/j.aca.2020.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 01/05/2023]
|
43
|
Photoluminescent Detection of Human T-Lymphoblastic Cells by ZnO Nanorods. Molecules 2020; 25:molecules25143168. [PMID: 32664437 PMCID: PMC7397042 DOI: 10.3390/molecules25143168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
The precise detection of cancer cells currently remains a global challenge. One-dimensional (1D) semiconductor nanostructures (e.g., ZnO nanorods) have attracted attention due to their potential use in cancer biosensors. In the current study, it was demonstrated that the possibility of a photoluminescent detection of human leukemic T-cells by using a zinc oxide nanorods (ZnO NRs) platform. Monoclonal antibodies (MABs) anti-CD5 against a cluster of differentiation (CD) proteins on the pathologic cell surface have been used as a bioselective layer on the ZnO surface. The optimal concentration of the protein anti-CD5 to form an effective bioselective layer on the ZnO NRs surface was selected. The novel biosensing platforms based on glass/ZnO NRs/anti-CD5 were tested towards the human T-lymphoblast cell line MOLT-4 derived from patients with acute lymphoblastic leukemia. The control tests towards MOLT-4 cells were performed by using the glass/ZnO NRs/anti-IgG2a system as a negative control. It was shown that the photoluminescence signal of the glass/ZnO NRs/anti-CD5 system increased after adsorption of T-lymphoblast MOLT-4 cells on the biosensor surface. The increase in the ZnO NRs photoluminescence intensity correlated with the number of CD5-positive MOLT-4 cells in the investigated population (controlled by using flow cytometry). Perspectives of the developed ZnO platforms as an efficient cancer cell biosensor were discussed.
Collapse
|
44
|
Systematic and validated techniques for the detection of ovarian cancer emphasizing the electro-analytical approach. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Hatamluyi B, Modarres Zahed F, Es'haghi Z, Darroudi M. Carbon Quantum Dots Co‐catalyzed with ZnO Nanoflowers and Poly (CTAB) Nanosensor for Simultaneous Sensitive Detection of Paracetamol and Ciprofloxacin in Biological Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.201900412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Behnaz Hatamluyi
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical Sciences Mashhad Iran
- Student Research CommitteeMashhad University of Medical Sciences Mashhad Iran
| | | | - Zarrin Es'haghi
- Department of ChemistryPayame Noor University 19395-4697 Tehran I.R. of IRAN
| | - Majid Darroudi
- Nuclear Medicine Research CenterMashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology and Nanotechnology, School of MedicineMashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
46
|
Sha R, Badhulika S. Recent advancements in fabrication of nanomaterial based biosensors for diagnosis of ovarian cancer: a comprehensive review. Mikrochim Acta 2020; 187:181. [PMID: 32076837 DOI: 10.1007/s00604-020-4152-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/02/2020] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is commonly diagnosed via determination of biomarkers like CA125, Mucin 1, HE4, and prostasin that can be present in the blood. However, there is a substantial need for less expensive, simpler, and portable diagnostic tools, both for timely diagnosis and management of ovarian cancer. This review (with 101 refs.) discusses various kinds of nanomaterial-based biosensors for tumor markers. Following an introduction into the field, a first section covers different kinds of biomarkers for ovarian cancer including CA125 (MUC16), mucin 1 (MUC1), human epididymis protein 4 (HE4), and prostasin. This is followed by a short overview on conventional diagnostic approaches. A large section is then presented on biosensors for determination of ovarian cancer, with subsections on optical biosensors (fluorimetric, colorimetric, surface plasmon resonance, chemiluminescence, electrochemiluminescence), on electrochemical sensors, molecularly imprinted sensors, paper-based biosensors, microfluidic (lab-on-a-chip) assays, chemiresistive and field effect transistor-based sensors, and giant magnetoresistive sensors. Tables are presented that give an overview on the wealth of methods and materials. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. Graphical abstract Schematic representation of the review covering the advancements in the fabrication of various nanomaterial based biosensors for diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Rinky Sha
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India.
| |
Collapse
|
47
|
Farías ME, Marani MM, Ramírez D, Niebylski AM, Correa NM, Molina PG. Polyclonal antibody production anti Pc_312-324 peptide. Its potential use in electrochemical immunosensors for transgenic soybean detection. Bioelectrochemistry 2020; 131:107397. [PMID: 31706117 PMCID: PMC11521756 DOI: 10.1016/j.bioelechem.2019.107397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
A new polyclonal antibody that recognizes the CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS), which provides resistance to glyphosate in soybean (Roundup Ready®, RR soybean), was produced. New Zealand rabbits were injected with a synthetic peptide (Pc_312-324, (PEP)) present in the soybean CP4-EPSPS protein. The anti-PEP antibodies production was evaluated by electrophoresis (SDS-PAGE) and an enzyme-linked immunosorbent assay (ELISA) was developed in order to study their specificity. The ELISA showed that the polyclonal antibody was specific to PEP. In addition, the anti- PEP was immobilized onto a gold disk electrode and the antigen-antibody interaction was evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Moreover, the EIS showed that the electron transfer resistance of the modified electrode increased after incubation with solutions containing CP4-EPSPS protein from RR transgenic soybean, while no changes were detected after incubation with no-RR soybean proteins. These results suggest that the CP4-EPSPS was immobilized onto the electrode, due to the specific interaction with the anti-PEP. These results show that this antigen-antibody interaction can be detected by electrochemical techniques, suggesting that the anti-PEP produced can be used in electrochemical immunosensors development to quantify transgenic soybean.
Collapse
Affiliation(s)
- Marcos E Farías
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC), CONICET, CP U9120ACD Puerto Madryn, Argentina
| | - Darío Ramírez
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), CONICET-Universidad Nacional de San Luis, Fac. de Quím., Bioquím. y Farmacia, C.P. 5700 San Luis, Argentina
| | - Ana M Niebylski
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Fac. de Cs. Exactas, Fco-Qcas. y Naturales, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS) UNRC-CONICET, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - N Mariano Correa
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina; Departamento de Química, Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina
| | - Patricia G Molina
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), UNRC-CONICET, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina; Departamento de Química, Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Agencia Postal # 3, C.P. X5804BYA Río Cuarto, Argentina.
| |
Collapse
|
48
|
Early diagnosis of Zika infection using a ZnO nanostructures-based rapid electrochemical biosensor. Talanta 2019; 203:153-160. [DOI: 10.1016/j.talanta.2019.04.080] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/07/2019] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
|
49
|
Napi MLM, Sultan SM, Ismail R, How KW, Ahmad MK. Electrochemical-Based Biosensors on Different Zinc Oxide Nanostructures: A Review. MATERIALS 2019; 12:ma12182985. [PMID: 31540160 PMCID: PMC6766311 DOI: 10.3390/ma12182985] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Electrochemical biosensors have shown great potential in the medical diagnosis field. The performance of electrochemical biosensors depends on the sensing materials used. ZnO nanostructures play important roles as the active sites where biological events occur, subsequently defining the sensitivity and stability of the device. ZnO nanostructures have been synthesized into four different dimensional formations, which are zero dimensional (nanoparticles and quantum dots), one dimensional (nanorods, nanotubes, nanofibers, and nanowires), two dimensional (nanosheets, nanoflakes, nanodiscs, and nanowalls) and three dimensional (hollow spheres and nanoflowers). The zero-dimensional nanostructures could be utilized for creating more active sites with a larger surface area. Meanwhile, one-dimensional nanostructures provide a direct and stable pathway for rapid electron transport. Two-dimensional nanostructures possess a unique polar surface for enhancing the immobilization process. Finally, three-dimensional nanostructures create extra surface area because of their geometric volume. The sensing performance of each of these morphologies toward the bio-analyte level makes ZnO nanostructures a suitable candidate to be applied as active sites in electrochemical biosensors for medical diagnostic purposes. This review highlights recent advances in various dimensions of ZnO nanostructures towards electrochemical biosensor applications.
Collapse
Affiliation(s)
- Muhammad Luqman Mohd Napi
- Computational Nanoelectronic Research Lab, School of Electrical Engineering, Universiti Teknologi Malaysia Johor Bahru, Skudai 81310, Malaysia
| | - Suhana Mohamed Sultan
- Computational Nanoelectronic Research Lab, School of Electrical Engineering, Universiti Teknologi Malaysia Johor Bahru, Skudai 81310, Malaysia.
| | - Razali Ismail
- Computational Nanoelectronic Research Lab, School of Electrical Engineering, Universiti Teknologi Malaysia Johor Bahru, Skudai 81310, Malaysia
| | - Khoo Wei How
- Computational Nanoelectronic Research Lab, School of Electrical Engineering, Universiti Teknologi Malaysia Johor Bahru, Skudai 81310, Malaysia
| | - Mohd Khairul Ahmad
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Malaysia
| |
Collapse
|
50
|
Bahavarnia F, Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N, Hassanzadeh A. Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: A new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD). Int J Biol Macromol 2019; 138:744-754. [PMID: 31326512 DOI: 10.1016/j.ijbiomac.2019.07.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/28/2023]
Abstract
Ovarian cancer is the first and most important cause of malignancy death in women. Mucin 16 or MUC16 protein also known as carcinoma antigen 125 (CA 125) is the most commonly used glycoprotein for early stage diagnosis of ovarian cancer. In this work, a novel paper-based bio-device through hand writing of Ag/RGO (silver nanoparticles/reduced graphene oxide) nano-ink on the flexible paper substrate using pen-on-paper technology was developed. The prepared interface was used to the recognition of CA 125 protein in human biofluid. For this purpose, Ag/rGO nano-ink was synthesized by deposition of Ag nanoparticles onto graphene oxide sheets and the reduction of graphene oxide to rGO simultaneously. Conductivity and resistance of conductive lines were studied after drawing on photographic paper. Subsequently, to prepare a new and unique immuno-device, paper electrode modified by cysteamine caped gold nanoparticles (CysA/Au NPs) using electrochemical techniques. CysA is bonded by sulfur atoms with Au (CysA/Au NPs), and from the amine group with hydroxyl and carboxyl groups of Ag/RGO nano-ink deposited on the surface of paper-based electrodes (CysA/Au NPs/Ag-rGO). Then, anti-CA 125 antibody was immobilized on the electrode surface through Au NPs and CA 125 positively charged amine groups interaction. Atomic force microscopy, Transmission electron microscopy, Field emission scanning electron microscopy, and dynamic light scattering, were performed to identify the engineered immunosensor. Using chronoamperometry technique and under the optimized conditions, the low limit of quantitation (LLOQ) for the proposed immunoassay was recorded as 0.78 U/ml, which this evaluation was performed at highly linear range of 0.78-400 U/ml. The high sensitivity of the electrochemical immunosensor device is indicative of the ability of this immuno-device to detect early stages ovarian cancer.
Collapse
Affiliation(s)
- Farnas Bahavarnia
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Hassanpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Nasrin Shadjou
- Nanotechnology Research Center, Urmia University, Urmia, Iran
| | - Ahmad Hassanzadeh
- Department of Processing, Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Chemnitzer Str. 40, 09599 Freiberg, Germany
| |
Collapse
|