1
|
Jangid AK, Noh KM, Kim S, Kim K. Engineered inulin-based hybrid biomaterials for augmented immunomodulatory responses. Carbohydr Polym 2024; 340:122311. [PMID: 38858027 DOI: 10.1016/j.carbpol.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
2
|
Wang H, Ullah A. Synthesis and Evaluation of Thermoresponsive Renewable Lipid-Based Block Copolymers for Drug Delivery. Polymers (Basel) 2022; 14:polym14173436. [PMID: 36080511 PMCID: PMC9460350 DOI: 10.3390/polym14173436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Polymeric micelle forming from self-assembly of amphiphilic macromolecules is one of the most potent drug delivery systems. Fatty acids, naturally occurring hydrophobic lipid components, can be considered as potential candidates for the fabrication of block copolymer micelles. However, examples of synthesis of responsive block copolymers using renewable fatty acids are scarce. Herein, we report the synthesis, characterization and testing of block copolymer micelles composed of a renewable fatty-acid-based hydrophobic block and thermoresponsive hydrophilic block for controlled drug delivery. The block copolymers of functionalized fatty acid and poly(N-isopropylacrylamide) (PNIPAM) were prepared via consecutive microwave-assisted reversible addition fragmentation chain transfer (RAFT) polymerization. The block copolymers with variable hydrophobic block length self-assembled in aqueous media and formed spherical nanoparticles of ~30 nm with low critical micelle concentration (CMC). To demonstrate the proof-of-concept, carbamazepine (CBZ) was used as a hydrophobic model drug to evaluate the performance of these micelles as nanocarriers. The in vitro drug release tests were carried out below (25 °C) and above (37 °C) the lower critical solution temperature (LCST) of the block copolymer. The drug release showed obvious temperature-triggered response and an accelerated drug release at 37 °C.
Collapse
|
3
|
Sarkar DJ, Bera AK, Baitha R, Das BK. Synthesis optimization of PEG diblock copolymer-based nanoemulsion of cypermethrin through central composite design and bioefficacy evaluation against fish ectoparasite Argulus bengalensis. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Bio-composites from spent hen derived lipids grafted on CNC and reinforced with nanoclay. Carbohydr Polym 2022; 281:119082. [DOI: 10.1016/j.carbpol.2021.119082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
|
5
|
Stouten J, Sijstermans N, Babilotte J, Pich A, Moroni L, Bernaerts KV. Micellar drug delivery vehicles formed from amphiphilic block copolymers bearing photo-cross-linkable cyclopentenone side groups. Polym Chem 2022. [DOI: 10.1039/d2py00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UV core cross-linkable amphiphilic block copolymers containing cyclopentenone side groups on the hydrophobic backbone were synthesized and drug delivery experiments were done with the cancer therapeutic drug Doxorubicin.
Collapse
Affiliation(s)
- Jules Stouten
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Nick Sijstermans
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Zuyd University of Applied Science, Faculty of Beta Sciences and Technology, Nieuw Eyckholt 300, 6419 DJ, Heerlen, The Netherlands
| | - Joanna Babilotte
- Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Andrij Pich
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- DWI Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Lorenzo Moroni
- Complex Tissue Regeneration department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Katrien V. Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
6
|
Designing biocompatible protein nanoparticles for improving the cellular uptake and antioxidation activity of tetrahydrocurcumin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Rahman SS, Arshad M, Qureshi A, Ullah A. Fabrication of a Self-Healing, 3D Printable, and Reprocessable Biobased Elastomer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51927-51939. [PMID: 33156602 DOI: 10.1021/acsami.0c14220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel self-healable, fully reprocessable, and inkjet three-dimensional (3D) printable partially biobased elastomer is reported in this work. A long-chain unsaturated diacrylate monomer was first synthesized from canola oil and then cross-linked with a partially oxidized silicon-based copolymer containing free thiol groups and disulfide bonds. The elastomer is fabricated through inkjet 3D printing utilizing the photoinitiated thiol-ene click chemistry and reprocessed by compression molding exploiting the dynamic nature of disulfide bond. Self-healing is enabled by phosphine-catalyzed disulfide metathesis. The elastomer displayed a tensile strength of ∼52 kPa, a breaking strain of ∼24, and ∼86% healing efficiency at 80 °C temperature after 8 h. Moreover, the elastomer showed excellent thermal stability, and the highest thermal degradation temperature was recorded to be ∼524 °C. After reprocessing through compression molding, the elastomer fully recovered its mechanical and thermal properties. These properties of the elastomer yield an ecofriendly alternative of fossil fuel-based elastomers that can find broad applications in soft robotics, flexible wearable devices, strain sensors, health care, and next-generation energy-harvesting and -storage devices.
Collapse
Affiliation(s)
- Saadman Sakib Rahman
- Department of Mechanical Engineering, University of Alberta, 05-293 Donadeo Innovation Centre for Engineering 9211 116 Street NW, Edmonton, AB T6G 1H9, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 360C South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Muhammad Arshad
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 360C South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Ahmed Qureshi
- Department of Mechanical Engineering, University of Alberta, 05-293 Donadeo Innovation Centre for Engineering 9211 116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 360C South Academic Building, Edmonton, AB T6G 2G7, Canada
| |
Collapse
|
8
|
Hatton FL. Recent advances in RAFT polymerization of monomers derived from renewable resources. Polym Chem 2020. [DOI: 10.1039/c9py01128e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this Minireview, RAFT polymerization of monomers derived from renewable resources is explored. Methods used to prepare these monomers are discussed, and potential applications of the resulting renewable polymers are highlighted.
Collapse
Affiliation(s)
- Fiona L. Hatton
- Department of Materials
- Loughborough University
- Loughborough
- UK
| |
Collapse
|
9
|
Wajid S, Khatoon A, Khan MA, Zafar H, Kanwal S, Atta-ur-Rahman, Choudhary MI, Basha FZ. Microwave-Assisted Organic Synthesis, structure–activity relationship, kinetics and molecular docking studies of non-cytotoxic benzamide derivatives as selective butyrylcholinesterase inhibitors. Bioorg Med Chem 2019; 27:4030-4040. [DOI: 10.1016/j.bmc.2019.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
|
10
|
Acheampong C, Zhang L, Agbo C, Liang D, Du C, Fu S. Synthesis and Characterization of A‐B‐A‐Type Nonionic Dimeric Dispersants for Pigment Dispersion. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Collins Acheampong
- Key Laboratory of Eco‐TextileJiangnan University, Ministry of Education Wuxi Jiangsu 214122 China
| | - Liping Zhang
- Key Laboratory of Eco‐TextileJiangnan University, Ministry of Education Wuxi Jiangsu 214122 China
| | - Christiana Agbo
- Key Laboratory of Eco‐TextileJiangnan University, Ministry of Education Wuxi Jiangsu 214122 China
| | - Dong Liang
- Key Laboratory of Eco‐TextileJiangnan University, Ministry of Education Wuxi Jiangsu 214122 China
| | - Changsen Du
- Key Laboratory of Eco‐TextileJiangnan University, Ministry of Education Wuxi Jiangsu 214122 China
| | - Shaohai Fu
- Key Laboratory of Eco‐TextileJiangnan University, Ministry of Education Wuxi Jiangsu 214122 China
| |
Collapse
|
11
|
PEG-coated vesicles from Pluronic/lipid mixtures for the carrying of photoactive erythrosine derivatives. Colloids Surf B Biointerfaces 2019; 175:530-544. [DOI: 10.1016/j.colsurfb.2018.12.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022]
|
12
|
Tran CTM, Tran PHL, Tran TTD. pH-independent dissolution enhancement for multiple poorly water-soluble drugs by nano-sized solid dispersions based on hydrophobic–hydrophilic conjugates. Drug Dev Ind Pharm 2019; 45:514-519. [DOI: 10.1080/03639045.2018.1562466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | - Thao T. D. Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Physicochemical interactions among α-eleostearic acid-loaded liposomes applied to the development of drug delivery systems. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Ghasemi S, Harandi ZA. Thermo-responsive poly(N-isopropylacrylamide)-block-poly(ionic liquid) of pyridinium sulfonate immobilized Pd nanoparticles in C–C coupling reactions. RSC Adv 2018; 8:14570-14578. [PMID: 35540787 PMCID: PMC9079935 DOI: 10.1039/c8ra01303a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/12/2018] [Indexed: 11/21/2022] Open
Abstract
A thermo-responsive poly(N-isopropylacrylamide)-block-poly(ionic liquid) (PNIPAM-b-PIL) of pyridinium-type was prepared. Initially, controlled synthesis of PNIPAM was performed via RAFT method. Subsequently, PNIPAM as macromolecular chain transfer agent (macro-CTA) was used for fabrication of PNIPAM-b-PIL through reaction with a synthesized IL monomer i.e. 4-vinyl pyridinium propane sulfonate. The Pd catalyst was produced throughout palladium nanoparticles' anchoring into this block copolymer. The catalyst was characterized using ICP, FT-IR, NMR, UV-Vis, TGA, XRD, SEM and EDX techniques. The catalyst's TEM image proved nearly fine dispersion of PdNPs with negligible agglomeration. The catalyst was used in the production of a variety of substituted alkenes and biaryl compounds (Heck and Suzuki coupling) in organic and aqueous media and under solvent free conditions. Additionally, the results signified extreme reusability of the catalyst with a simple recycling procedure. Preparation of thermo-responsive PNIPAM-b-PIL/PdNPs via RAFT method and its catalytic behavior in C–C coupling with extreme reusability.![]()
Collapse
Affiliation(s)
- Soheila Ghasemi
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz
- Iran
| | | |
Collapse
|
15
|
Dinh HTT, Tran PHL, Duan W, Lee BJ, Tran TTD. Nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates for dissolution enhancement of poorly water-soluble drugs. Int J Pharm 2017; 533:93-98. [PMID: 28951346 DOI: 10.1016/j.ijpharm.2017.09.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate hydrophilic-hydrophobic conjugates as new carriers for nano-sized solid dispersions (SDs). The amphiphilic conjugates were prepared via an esterification reaction between hydroxypropyl methylcellulose (HPMC) and zein. Four formulations of conjugates were investigated with different ratios of zein to HPMC (1:5, 1:10, 1:20, and 1:40). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy and particle size analyses were performed to characterize and optimize the formulation for SD. Isradipine and prednisolone were chosen as poorly water-soluble drugs for SD using the conjugate as a carrier. Dissolution tests, particle size analyses, powder X-ray diffraction and FTIR were conducted to determine the dissolution enhancement and its mechanism. The conjugate formed small particles as a self-assembled carrier. Although the SD with isradipine or prednisolone showed a small increase in particle size, the dissolution rate of those drugs in SD increased significantly compared to pure drugs. The interaction between the drug and conjugate was attributed to the formation of small particles and changes to the drug crystallinity. This study demonstrated that the hydrophilic-hydrophobic conjugate is a promising material for SD, with the potential of reducing drug particles to nano size in addition to promoting drug amorphousness or molecular interactions.
Collapse
Affiliation(s)
- Ha T T Dinh
- International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Wei Duan
- Deakin University, Geelong, School of Medicine, Australia
| | - Beom-Jin Lee
- Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Republic of Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
16
|
Shang L, Wang QY, Chen KL, Qu J, Zhou QH, Luo JB, Lin J. SPIONs/DOX loaded polymer nanoparticles for MRI detection and efficient cell targeting drug delivery. RSC Adv 2017. [DOI: 10.1039/c7ra08348c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Reducible polydopamine coated magnetic nanoparticles (SPIONs@PDA) for both magnetic resonance imaging (MRI) detection and cell targeting drug delivery.
Collapse
Affiliation(s)
- Le Shang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Qiu-yue Wang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Kang-long Chen
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Jing Qu
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Qing-han Zhou
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Jian-bin Luo
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Juan Lin
- School of Biomedical Sciences
- Chengdu Medical College
- Chengdu
- China
| |
Collapse
|