1
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
2
|
Chakraborty I, Olsson RT, Andersson RL, Pandey A. Glucose-based biofuel cells and their applications in medical implants: A review. Heliyon 2024; 10:e33615. [PMID: 39040310 PMCID: PMC11261083 DOI: 10.1016/j.heliyon.2024.e33615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
In glucose biofuel cells (G-BFCs), glucose oxidation at the anode and oxygen reduction at the cathode yield electrons, which generate electric energy that can power a wide range of electronic devices. Research associated with the development of G-BFCs has increased in popularity among researchers because of the eco-friendly nature of G-BFCs (as related to their construction) and their evolution from inexpensive bio-based materials. In addition, their excellent specificity towards glucose as an energy source, and other properties, such as small size and weight, make them attractive within various demanding applied environments. For example, G-BFCs have received much attention as implanted devices, especially for uses related to cardiac activities. Envisioned pacemakers and defibrillators powered by G-BFCs would not be required to have conventional lithium batteries exchanged every 5-10 years. However, future research is needed to develop G-BFCs demonstrating more stable power consistency and improved lifespan, as well as solving the challenges in converting laboratory-made implantable G-BFCs into implanted devices in the human body. The categorization of G-BFCs as a subcategory of different biofuel cells and their performance is reviewed in this article.
Collapse
Affiliation(s)
| | - Richard T. Olsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Richard L. Andersson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| | - Annu Pandey
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH – Royal Institute of Technology, Teknikringen 56-58, 100 44, Stockholm, Sweden
| |
Collapse
|
3
|
Zhang W, Zhang J, Fan S, Zhang L, Liu C, Liu J. Oxygen reduction catalyzed by bilirubin oxidase and applications in biosensors and biofuel cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Yang H, Wang N, Mo L, Wu M, Yang R, Xu X, Huang Y, Lin J, Zhang LM, Jiang X. Reduction sensitive hyaluronan-SS-poly(ε-caprolactone) block copolymers as theranostic nanocarriers for tumor diagnosis and treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 98:9-18. [PMID: 30813097 DOI: 10.1016/j.msec.2018.12.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 12/06/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022]
Abstract
Tumor-targeted multifunctional nanocarriers play an important role in tumor diagnosis and treatment. Herein, disulfide bonds linked amphiphilic hyaluronan-SS-poly(ε-caprolactone) diblock copolymers (HA-SS-PCL) were synthesized and studied as theranostic nanocarriers for tumor diagnosis and treatment. The chemical structure of HA-SS-PCL was confirmed by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR). The self-assembling behavior of the HA-SS-PCL into GSH-responsive micelles and their degradation were characterized by fluorescence spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). Theranostic nanocarriers encapsulating doxorubicin (DOX) and superparamagnetic iron oxide (SPIO) were formed via a dialysis. In vitro drug release results suggested that the HA-SS-PCL micelles possessed reductant-triggered doxorubicin release ability, which was confirmed by 100% of DOX release from HA-SS-PCL micelles within 12 h under 10 mM of glutathione (GSH), whereas about 40% of DOX was released under non-reductive condition within 24 h. Both flow cytometry and confocal laser scanning microscopy (CLSM) analysis revealed that the HA-SS-PCL micelles loaded with DOX were internalized in HepG2 cell via a receptor mediated mechanism between hyaluronan and the CD44 receptor. Furthermore, the MTT assay and cell apoptosis analysis revealed that the DOX-loaded HA-SS-PCL micelles exhibited pronounced antitumor ability towards HepG2 cells compared with that of the reduction-insensitive HA-PCL micelles at the same DOX dosage. The r2 relaxivity value of the DOX/SPIO loaded HA-SS-PCL micelles was up to 221.2 mM-1 s-1 (Fe). Thus, the obtained HA-SS-PCL block copolymers demonstrate promising potential as tumor targeting theranostic nanocarriers in the field of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Huikang Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Nianhua Wang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Lei Mo
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Mei Wu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Xiangdong Xu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yugang Huang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jiantao Lin
- Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
6
|
Guo T, Gao J, Xu M, Ju Y, Li J, Xue H. Hierarchically Porous Organic Materials Derived From Copolymers: Preparation and Electrochemical Applications. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1488730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Teng Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Jiefeng Gao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Mengjiao Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yun Ju
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Jiye Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|