1
|
Liang B, Chen X, Sun Y, Pan X, Lin Y, Gao Q, Xu Y, Zhang L. Biomimetic mineralization effect of a self-etch adhesive loaded with amorphous fluorinated calcium phosphate nanoparticles. J Dent 2025; 157:105743. [PMID: 40221121 DOI: 10.1016/j.jdent.2025.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/14/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVES The study investigated the biomimetic mineralization effect of a self-etch adhesive loaded with amorphous fluorinated calcium phosphate (AFCP) nanoparticles. METHODS In this study, fluoride was applied to synthesize AFCP nanoparticles, which were characterized by high resolution transmission electron microscope, selected area electron diffraction and Fourier-transform infrared spectroscopy. Subsequently, the self-etch adhesive (Clearfil S3 Bond) was mixed throughly with 20 wt% of AFCP. The single-layer reconstituted collagen fibrils and demineralized dentin were used to investigate the mineralization effects of AFCP nanoparticles as well as Clearfil S3 Bond loaded with AFCP. Moreover, the Cell Counting Kit-8 assay was conducted to evaluate the cytotoxicity of AFCP-loaded adhesive. RESULTS The AFCP nanoparticles were successfully synthesized and characterized as an amorphous phase, which demonstrated better effectiveness in collagen fibril mineralization compared to amorphous calcium phosphate nanoparticles. Both AFCP nanoparticles and adhesive loaded with AFCP induced intrafibrillar mineralization of single-layer collagen fibrils. The incorporation of AFCP nanoparticles into adhesive led to the formation of remineralized crystals within the demineralized dentin. Moreover, cytotoxicity tests confirmed the biocompatibility of the AFCP-loaded adhesive. CONCLUSIONS The incorporation of AFCP nanoparticles into the self-etch adhesive facilitated collagen fibril mineralization and remineralization of demineralized dentin. CLINICAL SIGNIFICANCE Incorporating fluoride, a commonly used anti-caries element, into the self-etch adhesive in the form of AFCP nanoparticles enables its biomimetic mineralization in restorative treatments, presenting a potential approach for developing a novel adhesive system to prevent dental caries clinically.
Collapse
Affiliation(s)
- Bing Liang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaolu Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yi Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xinni Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Ye Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Qi Gao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China.
| | - Yuedan Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ling Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
2
|
Han F, Sun Z, Xie H, Chen C. Improved bond performances of self-etch adhesives to enamel through increased MDP-Ca salt formation via phosphoric acid pre-etching. Dent Mater 2021; 38:133-146. [PMID: 34836697 DOI: 10.1016/j.dental.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The chemical affinity between 10-methacryloyloxydecyl dihydrogen phosphate (MDP) and hydroxyapatite (HAp) is an important factor in the enamel bonding provided by MDP-based self-etch (SE) adhesives, besides microinterlocking mechanisms. This study aimed to investigate how phosphoric acid pre-etching affects MDP-Ca salt formation in the application of MDP-based SE adhesives. METHODS Single Bond Universal (SBU), All Bond Universal (ABU), Clearfil Universal Bond Quick (CBQ), and a MDP-based all-in-one adhesive (EXP) were used in both SE and etch-and-rinse (ER) modes, along with Clearfil SE Bond and untreated enamel (UE) as controls. The MDP-Ca salts produced with or without etching were examined by nuclear magnetic resonance, Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Zeta potential, contact angle, and scanning electron microscopy measurements were employed to elucidate the mechanism behind the changes in MDP/HAp chemical affinity upon pre-etching. RESULTS The percentage of MDP-Ca salt in EXP_ER (73.13%) was higher than that in EXP_SE (43.27%). Characteristic CH2 (1130, 1441, 2853, and 2909 cm-1), CC (1641 cm-1), and CO (1718 cm-1) bands were observed in the Raman spectra of EXP_ER. Pre-etching increased the negative zeta potential of the enamel surface compared to that of UE (P < 0.001). The contact angles of MDP-based adhesives applied to pre-etched enamel were significantly lower than those of the self-etched surface (P < 0.05). SIGNIFICANCE The increased MDP-Ca salt formation is a significant advantage of phosphoric acid pre-etching, improving the MDP/HAp chemical affinity in addition to increasing surface wettability.
Collapse
Affiliation(s)
- Fei Han
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zhida Sun
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Haifeng Xie
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Chen Chen
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University; Jiangsu Province Key Laboratory of Oral Diseases; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
3
|
Soontornvatin V, Prasansuttiporn T, Thanatvarakorn O, Jittidecharaks S, Hosaka K, Foxton RM, Nakajima M. Bond strengths of three-step etch-and-rinse adhesives to silane contaminated dentin. Dent Mater J 2020; 40:385-392. [PMID: 33208575 DOI: 10.4012/dmj.2020-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to evaluate the effect of silane coupling agent contamination on the microtensile bond strength (µTBS) of 3-step etch-and-rinse adhesives on dentin. Flat occlusal dentin surfaces were prepared and randomly divided into 8 groups (n=20) based on the tested adhesives; Scotchbond Multi-purpose or Optibond FL, with contamination of an experimental silane (2 vol% of 3-m ethacryloxypropyltrimethoxysilane at pH 4.5) before acid-etching, after-etching or after-priming; while the groups without silane contamination served as controls. µTBS data were analyzed by two-way ANOVA and Tukey's HSD tests at a significance level of 0.05. Additional specimens of contaminated dentin were used to analyze changes in the organic molecules by Fourier transform infrared spectroscopy (FTIR). Silane contamination before acid-etching did not significantly change µTBS (p>0.05), but contamination after-etching and after-priming significantly decreased µTBS of both adhesives (p<0.05). Silane contamination had an adverse effect on the dentin bond strength of 3-step etch-and-rinse adhesives especially after-priming.
Collapse
Affiliation(s)
- Vasavat Soontornvatin
- Dentist, Dental Section, Nongsung Hospital.,Master of Science Program in Dentistry, Faculty of Dentistry, Chiang Mai University
| | - Taweesak Prasansuttiporn
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University.,Center of Excellence in Materials Science and Technology, Chiang Mai University
| | | | - Sumana Jittidecharaks
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University
| | - Keiichi Hosaka
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Richard M Foxton
- Restorative Dentistry, King's College London Dental Institute, King's College London
| | - Masatoshi Nakajima
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| |
Collapse
|
4
|
Buchwald Z, Czarnecka B, Voelkel A. Inverse gas chromatography in the examination of adhesion between tooth hard tissues and restorative dental materials. Sci Rep 2020; 10:13476. [PMID: 32778691 PMCID: PMC7417541 DOI: 10.1038/s41598-020-70480-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022] Open
Abstract
The adhesion is a crucial issue in the bonding of dental restorative materials to tooth hard tissues. A strong and durable bond between artificial and natural materials is responsible for the success of the restoration in the oral cavity; therefore it has to be thoroughly examined before new restorative material is introduced to the market and used clinically. Among all methods used to examine bonding strength, most of them require a large number of healthy teeth to be conducted. In this paper, the bond strength between tooth hard tissues (dentin and enamel) and an exemplary restorative composite was examined with the non-conventional method, i.e. inverse gas chromatography. Dentin and enamel from bovine teeth were separated and subjected to the standard preparation procedure using the 3-component etch-and-rinse commercial bonding system. Tissues, as well as commercial restorative composite, were examined using inverse gas chromatography. The work of adhesion between dentin/enamel and composite was calculated. Obtained results were compared with the values of shear bond strength of six configurations, i.e. etched dentin/enamel-composite, primed dentin/enamel-composite, and bonded dentin/enamel-composite. All obtained results proved that there is a correlation between the values describing bond strength obtained from inverse gas chromatography and direct mechanical tests (shear bond strength tests). It proves that inverse gas chromatography is a powerful perspective tool for the examination of bond strength between tooth hard tissues and potential dental materials without using a large number of health tooth tissues.
Collapse
Affiliation(s)
- Zuzanna Buchwald
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965, Poznan, Poland.
| | - Beata Czarnecka
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, ul. Bukowska 70, 60-812, Poznan, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965, Poznan, Poland
| |
Collapse
|
5
|
The Physicochemical Characteristics of Prosthetic Materials and Their Influence on Their Clinical Properties. Chromatographia 2017; 80:1761-1769. [PMID: 29213146 PMCID: PMC5698369 DOI: 10.1007/s10337-017-3420-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/20/2017] [Accepted: 10/12/2017] [Indexed: 11/23/2022]
Abstract
The use of elastic materials favours degradation of their surface. The period of their clinical usefulness is then shortened, and their further utilisation in the oral cavity may have the reverse effect. The surface properties of such material as well as the influence of the humidity on their surface are very important as they determine the prosthetic materials behavior in the mouth. The surface of such material should be resistant to water. Inverse gas chromatography is an accurate, sensitive technique for studying surface properties. Thanks to using a unique equipment specially designed for IGC technique, Surface Energy Analyzer, it was possible to characterize the surface at 0 and 80% of humidity. Our results show that increased humidity does not affect surface properties of studied prosthetic materials. Their ability to dispersive and specific interactions change in very limited degree. IGC experiment was also applied for the estimation of Hansen solubility parameters that indicate ability of a material to dispersive, polar, and hydrogen-bonding interactions. Relation between the surface characteristics and practical use of soft lining materials with implications for their clinical usefulness is also discussed.
Collapse
|