1
|
Jia W, Xu L, Xu W, Yang M, Zhang Y. Application of nanotechnology in the diagnosis and treatment of acute pancreatitis. NANOSCALE ADVANCES 2022; 4:1949-1961. [PMID: 36133408 PMCID: PMC9419146 DOI: 10.1039/d2na00020b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/16/2022] [Indexed: 06/16/2023]
Abstract
Acute pancreatitis (AP) is a common digestive system disease. The severity of AP ranges from mild edema in the pancreas to severe systemic inflammatory responses leading to peripancreatic/pancreatic necrosis, multi-organ failure and death. Improving the sensitivity of AP diagnosis and developing alternatives to traditional methods to treat AP have gained the attention of researchers. With the continuous rise of nanotechnology, it is being widely used in daily life, biomedicine, chemical energy and many other fields. Studies have demonstrated the effectiveness of nanotechnology in the diagnosis and treatment of AP. Nanotechnology has the advantages of simplicity, rapidity and sensitivity in detecting biomarkers of AP, as well as enhancing imaging, which helps in the early diagnosis of AP. On the other hand, nanoparticles (NPs) have oxidative stress inhibiting and anti-inflammatory effects, and can also be loaded with drugs as well as being used in anti-infection therapy, providing a new approach for the treatment of AP. In this article, we elaborate and summarize on the potential of nanoparticles for diagnostic and therapeutic applications in AP from the current reported literature and experimental results to provide useful guidelines for further research on the application of nanotechnology.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - LinFeng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100730 China
| | - YeWei Zhang
- Medical School, Southeast University Nanjing 210009 China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
2
|
Chen X, Xing H, Zhou Z, Hao Y, Zhang X, Qi F, Zhao J, Gao L, Wang X. Nanozymes go oral: nanocatalytic medicine facilitates dental health. J Mater Chem B 2021; 9:1491-1502. [PMID: 33427841 DOI: 10.1039/d0tb02763d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanozymes are multi-functional nanomaterials with enzyme-like activity, which rapidly won a place in biomedicine due to their number of nanocatalytic materials types and applications. Yan and Gao first discovered horseradish peroxidase-like activity in ferromagnetic nanoparticles in 2007. With the joint efforts of many scientists, a new concept-nanocatalytic medicine-is emerging. Nanozymes overcome the inherent disadvantages of natural enzymes, such as poor environmental stability, high production costs, difficult storage and so on. Their progress in dentistry is following the advancement of materials science. The oral research and application of nanozymes is becoming a new branch of nanocatalytic medicine. In order to highlight the great contribution of nanozymes facilitating dental health, we first review the overall research progress of multi-functional nanozymes in oral related diseases, including treating dental caries, dental pulp diseases, oral ulcers and peri-implantitis; the monitoring of oral cancer, oral bacteria and ions; and the regeneration of soft and hard tissue. Additionally, we also propose the challenges remaining for nanozymes in terms of their research and application, and mention future concerns. We believe that the new catalytic nanomaterials will play important roles in dentistry in the future.
Collapse
Affiliation(s)
- Xiaohang Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Zilan Zhou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China and CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Jing Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China. and Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| |
Collapse
|
3
|
Isoorientin Inhibits Inflammation in Macrophages and Endotoxemia Mice by Regulating Glycogen Synthase Kinase 3 β. Mediators Inflamm 2020; 2020:8704146. [PMID: 33192176 PMCID: PMC7641714 DOI: 10.1155/2020/8704146] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Isoorientin has anti-inflammatory effects; however, the mechanism remains unclear. We previously found isoorientin is an inhibitor of glycogen synthase kinase 3β (GSK3β) in vitro. Overactivation of GSK3β is associated with inflammatory responses. GSK3β is inactivated by phosphorylation at Ser9 (i.e., p-GSK3β). Lithium chloride (LiCl) inhibits GSK3β and also increases p-GSK3β (Ser9). The present study investigated the anti-inflammatory effect and mechanism of isoorientin via GSK3β regulation in lipopolysaccharide- (LPS-) induced RAW264.7 murine macrophage-like cells and endotoxemia mice. LiCl was used as a control. While AKT phosphorylates GSK3β, MK-2206, a selective AKT inhibitor, was used to activate GSK3β via AKT inhibition (i.e., not phosphorylate GSK3β at Ser9). The proinflammatory cytokines TNF-α, IL-6, and IL-1β were detected by ELISA or quantitative real-time PCR, while COX-2 by Western blotting. The p-GSK3β and GSK3β downstream signal molecules, including NF-κB, ERK, Nrf2, and HO-1, as well as the tight junction proteins ZO-1 and occludin were measured by Western blotting. The results showed that isoorientin decreased the production of TNF-α, IL-6, and IL-1β and increased the expression of p-GSK3β in vitro and in vivo, similar to LiCl. Coadministration of isoorientin and LiCl showed antagonistic effects. Isoorientin decreased the expression of COX-2, inhibited the activation of ERK and NF-κB, and increased the activation of Nrf2/HO-1 in LPS-induced RAW264.7 cells. Isoorientin increased the expressions of occludin and ZO-1 in the brain of endotoxemia mice. In summary, isoorientin can inhibit GSK3β by increasing p-GSK3β and regulate the downstream signal molecules to inhibit inflammation and protect the integrity of the blood-brain barrier and the homeostasis in the brain.
Collapse
|
4
|
Li Y, Li Y, Bai Y, Lin L, Sun Y. High catalytic efficiency from Er 3+-doped CeO 2-x nanoprobes for in vivo acute oxidative damage and inflammation therapy. J Mater Chem B 2020; 8:8634-8643. [PMID: 32839792 DOI: 10.1039/d0tb01463j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerium oxide nanoparticles (NPs) due to their advanced catalytic performance have been widely used to treat oxidative damage. However, Ce2O3 NPs have not been further investigated in the treatment of acute oxidative injury in vivo. It is meaningful to improve the efficiency for treatment of acute oxidative injury with NPs in vivo. In this report, we designed Er3+-doped Ce2O3 (Er/Ce2O3) NPs with a size of 7.9 nm, which were used to treat acute liver injury. Er/Ce2O3 NPs realized high-efficiency catalysis of hydrogen peroxide (H2O2) at room temperature. An acute liver damage model was established through intraperitoneal injection of lipopolysaccharide (LPS) in C57 mice. By analyzing histopathological and biochemical indexes, Er/Ce2O3 NPs showed a significant improvement in LPS-induced acute liver injury. Acute liver oxidative damage can be treated within 24 hours, which proved the high catalytic efficiency of Er/Ce2O3 NPs in vivo. The activities of SOD, GPx and CTA increased and production of ROS decreased with Er/Ce2O3 NP treatment in comparison with LPS-induced injury, indicating that the mechanism of Er/Ce2O3 NPs in the treatment of acute oxidative damage of liver was mainly via catalysis of ROS products. Moreover, the protein expression levels of TNF-α, CD45 and IL-1β in liver decreased in the Er/Ce2O3 NPs-treated group, which indicated that Er/Ce2O3 NPs have the function of anti-inflammation property. Therefore, Er/Ce2O3 NPs can be applied to treat and prevent diseases caused by acute oxidative damage.
Collapse
Affiliation(s)
- Yongmei Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin, 300134, China.
| | - Yuemei Li
- School of Chemistry and Chemical Engineering Harbin Institute of Technology, No. 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Yandong Bai
- Tianjin Union Medical Center, No. 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Laixiang Lin
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin, 300134, China.
| | - Yina Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin, 300134, China.
| |
Collapse
|
5
|
Wu B, Lin L, Zhou F, Wang X. Precise engineering of neutrophil membrane coated with polymeric nanoparticles concurrently absorbing of proinflammatory cytokines and endotoxins for management of sepsis. Bioprocess Biosyst Eng 2020; 43:2065-2074. [PMID: 32583175 DOI: 10.1007/s00449-020-02395-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Sepsis, ensuing from unrestrained inflammatory replies to bacterial infections, endures with high injury and mortality worldwide. Presently, active sepsis management is missing in the hospitals during the surgery, and maintenance remnants mainly helpful. Now, we have constructed the macrophage bio-mimic nanoparticles for the treatment of sepsis and its management. Biomimetic macrophage nanoparticles containing a recyclable polymeric nanoparticle covered with cellular membrane resulting from macrophages (represented PEG-Mac@NPs) have an antigenic external similar to the cells. The PEG-Mac@NPs, Isorhamnetin (Iso) on the free LPS encouraged endotoxin in BALB/c mice through evaluating the nitric acid, TNF-α, and IL-6. Further, the COX-2 and iNOS expression ratio was examined to recognize the connection of several trails to find the exact mode of action PEG-Mac@NPs and Iso. The outcome reveals that the PEG-Mac@NPs inhibited and LPS triggered the NO production though the macrophages peritoneal. Furthermore, the anti-inflammatory possessions were additionally categorized through the reduction of COX-2 and iNOS protein expressions. Engaging PEG-Mac@NPs as a biomimetic decontamination approach displays potential for refining sepsis patient consequences, possibly in the use of sepsis management.
Collapse
Affiliation(s)
- Beilei Wu
- Department of Critical Care Medicine, Wenzhou Central Hospital, No. 252, Baili East Road, Lucheng District, Wenzhou, 325000, China
| | - Li Lin
- Department of Critical Care Medicine, Wenzhou Central Hospital, No. 252, Baili East Road, Lucheng District, Wenzhou, 325000, China
| | - Fan Zhou
- Department of Traditional Chinese Medicine, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Xiaobo Wang
- Department of Critical Care Medicine, Wenzhou Central Hospital, No. 252, Baili East Road, Lucheng District, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Zheng Q, Fang Y, Zeng L, Li X, Chen H, Song H, Huang J, Shi S. Cytocompatible cerium oxide-mediated antioxidative stress in inhibiting ocular inflammation-associated corneal neovascularization. J Mater Chem B 2019; 7:6759-6769. [PMID: 31593203 DOI: 10.1039/c9tb01066a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As oxidative stress is involved with inflammation and neovascularization, blocking oxidative stress may be beneficial for reducing inflammation. To investigate the potential use of cerium oxide nanoparticles (CeNPs) in treating neovascularization-related ophthalmic diseases, various CeNP samples were synthesized, and the sample with the best antioxidant efficacy was used in a rat model of inflammation-associated corneal neovascularization. This synthesized cerium oxide showed good biocompatibility and was capable of mediating a decrease in the expression levels of inflammatory factors via antioxidative stress. Additionally, in vitro tests showed that the Ce3+/Ce4+ ratio of the CeNPs directly affected the antioxidative activity, with higher ratios achieving better efficacy. The anti-inflammatory efficacy of the functional CeNPs was examined both in vitro and in vivo. Slit-lamp biomicroscopy and histological analysis revealed the gradual development of corneal neovascularization, suggesting that inflammation and neovascularization could be controlled by reducing the level of oxidative stress. CeNP-induced antioxidation could serve as a new strategy in the development of long-acting functional agents for treating ophthalmic diseases.
Collapse
Affiliation(s)
- Qianqian Zheng
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, P. R. China. and Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yiming Fang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, P. R. China.
| | - Li Zeng
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, P. R. China.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, P. R. China.
| | - Hao Chen
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, P. R. China.
| | - Haixing Song
- School of Biomedical Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Jinhai Huang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, P. R. China.
| | - Shuai Shi
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, P. R. China.
| |
Collapse
|
7
|
Chen J, Gu X, Zhou L, Wang S, Zhu L, Huang Y, Cao F. Long non-coding RNA-HOTAIR promotes the progression of sepsis by acting as a sponge of miR-211 to induce IL-6R expression. Exp Ther Med 2019; 18:3959-3967. [PMID: 31656541 PMCID: PMC6812472 DOI: 10.3892/etm.2019.8063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/29/2019] [Indexed: 12/18/2022] Open
Abstract
Sepsis remains the primary cause of death in intensive care units and multiple long non-coding RNAs (lncRNAs) have been demonstrated to be dysregulated in samples of patients with sepsis. However, whether lncRNA-HOTAIR is involved in the etiology of sepsis remains unclear. The aim of the present study was to investigate the role of HOTAIR in sepsis and to reveal the associated mechanisms. A bioinformatics analysis and dual-luciferase reporter assay was performed to evaluate the interaction between HOTAIR and miR-211, as well as miR-211 and IL-6R. An animal model of sepsis was established in mice via cecal ligation and puncture. Interferon (IFN)-γ, interleukin (IL)-6, IL-17, tumor necrosis factor (TNF)-α, IL-1β, IL-6 receptor (R), microRNA (miR)-211 and HOTAIR expression was measured using reverse transcription-quantitative PCR. Cellular proliferation and apoptosis of monocytes were assessed using cell counting kit-8 assay and flow cytometry, respectively. miR-211 was revealed to be targeted by HOTAIR and IL-6R. The expression of IFN-γ, IL-6, IL-17, TNF-α, IL-1β, IL-6R and HOTAIR was significantly upregulated in the septic mice, whereas miR-211 expression was downregulated. The overexpression of hox transcript antisense RNA (HOTAIR) and knockdown of miR-211 were associated with an increased expression of IFN-γ, IL-6, IL-17, TNF-α, IL-1β and IL-6R in monocytes, while the overexpression of miR-211 exhibited the opposite effect. HOTAIR overexpression and miR-211 knockdown significantly inhibited cellular proliferation and promoted monocyte apoptosis, whereas the overexpression of miR-211 exhibited the opposite effects in monocytes. Therefore, HOTAIR may promote the progression of sepsis by indirectly regulating the expression of IL-6R via miR-211.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Emergency Intensive Care Unit, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Xingsheng Gu
- Department of Emergency, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Li Zhou
- Department of Emergency Intensive Care Unit, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Shuguang Wang
- Department of Emergency Intensive Care Unit, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Limei Zhu
- Department of Trauma Orthopedics, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yangneng Huang
- Department of Emergency, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Feng Cao
- Department of Emergency, Ningbo 6th Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|