1
|
Yu J, Bian H, Zhao Y, Guo J, Yao C, Liu H, Shen Y, Yang H, Huang C. Epigallocatechin-3-gallate/mineralization precursors co-delivery hollow mesoporous nanosystem for synergistic manipulation of dentin exposure. Bioact Mater 2023; 23:394-408. [PMID: 36474660 PMCID: PMC9712830 DOI: 10.1016/j.bioactmat.2022.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
As a global public health focus, oral health plays a vital role in facilitating overall health. Defected teeth characterized by exposure of dentin generally increase the risk of aggravating oral diseases. The exposed dentinal tubules provide channels for irritants and bacterial invasion, leading to dentin hypersensitivity and even pulp inflammation. Cariogenic bacterial adhesion and biofilm formation on dentin are responsible for tooth demineralization and caries. It remains a clinical challenge to achieve the integration of tubule occlusion, collagen mineralization, and antibiofilm functions for managing exposed dentin. To address this issue, an epigallocatechin-3-gallate (EGCG) and poly(allylamine)-stabilized amorphous calcium phosphate (PAH-ACP) co-delivery hollow mesoporous silica (HMS) nanosystem (E/PA@HMS) was herein developed. The application of E/PA@HMS effectively occluded the dentinal tubules with acid- and abrasion-resistant stability and inhibited the biofilm formation of Streptococcus mutans. Intrafibrillar mineralization of collagen fibrils and remineralization of demineralized dentin were induced by E/PA@HMS. The odontogenic differentiation and mineralization of dental pulp cells with high biocompatibility were also promoted. Animal experiments showed that E/PA@HMS durably sealed the tubules and inhibited biofilm growth up to 14 days. Thus, the development of the E/PA@HMS nanosystem provides promising benefits for protecting exposed dentin through the coordinated manipulation of dentin caries and hypersensitivity.
Collapse
Affiliation(s)
- Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Haolin Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaning Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Chenmin Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Corresponding author.
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Corresponding author.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Corresponding author.
| |
Collapse
|
2
|
Costa LSD, Khan LU, Franqui LS, Delite FDS, Muraca D, Martinez DST, Knobel M. Hybrid magneto-luminescent iron oxide nanocubes functionalized with europium complexes: synthesis, hemolytic properties and protein corona formation. J Mater Chem B 2021; 9:428-439. [PMID: 33367419 DOI: 10.1039/d0tb02454f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of hybrid nanostructures based on magneto-luminescent properties is a promising strategy for nano-bio applications and theranostics platforms. In this work, we carried out the synthesis and functionalization of iron oxide nanocubes (IONCs) to obtain multifunctional hybrid nanostructures towards biomedical applications. The IONCs were functionalized with tetraethylorthosilicate, thenoyltrifluoroacetone-propyl-triethoxysilane and europium(iii)-dibenzoylmethane complexes to obtain the materials termed as IOCNCs@SiO2, IONCs@SiO2TTA, IONCs@SiO2TTA-Eu and IONCs@SiO2-TTA-Eu-DBM, respectively. Then, the biological interactions of these nanostructures with red blood cells - RBCs (hemolysis) and human blood plasma (protein corona formation) were evaluated. The XPS spectrocopy and EDS chemical mapping analysis showed that each domain is homogeneously occupied in the hybrid material, with the magnetic core at the center and the luminescent domain on the surface of the hybrid nanomaterial with a core@shell like structure. Futhermore, after each functionalization step, the nanomaterial surface charge drastically changed, with critical impact on RBC lysis and corona formation. While IONCs@SiO2 and IONCs@SiO2-TTA-Eu-DBM showed hemolytic properties in a dose-dependent manner, the IONCs@SiO2TTA-Eu did not present any hemolytic effect up to 300 μg mL-1. Protein corona results showed a pattern of selective adsorption of proteins with each surface of the synthesized hybrid materials. However, as a general result, a suppression of hemolysis after protein corona formation in all tests was verified. Finally, this study provides a solid background for further applications of these hybrid magneto-luminescent materials containing new surface functionalities in the emerging field of medical nanobiotechnology.
Collapse
Affiliation(s)
- Luelc Souza da Costa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil. and "Gleb Wataghim" Institute of Physics (IFGW), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil.
| | - Latif Ullah Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil. and Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME), Allan, Jordan
| | - Lidiane Silva Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| | - Fabrício de Souza Delite
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| | - Diego Muraca
- "Gleb Wataghim" Institute of Physics (IFGW), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil.
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| | - Marcelo Knobel
- "Gleb Wataghim" Institute of Physics (IFGW), University of Campinas (Unicamp), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Rathinavel S, Ekambaram S, Korrapati PS, Sangeetha D. Design and fabrication of electrospun SBA-15-incorporated PVA with curcumin: a biomimetic nanoscaffold for skin tissue engineering. Biomed Mater 2020; 15:035009. [PMID: 31935710 DOI: 10.1088/1748-605x/ab6b2f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fabricating and designing a scaffold is a complex and highly challenging process in the current scenario. The present study deals with the design and fabrication of electrospun Santa Barbara Amorphous (SBA)-15-incorporated polyvinyl alcohol (PVA) with curcumin, which can be used as a biomimetic nanoscaffold for skin tissue engineering. Curcumin was selected due to its effective anti-microbial and anti-inflammatory properties. SBA-15 was selected for its characteristic drug-carrying potential. Fourier transform infrared spectroscopy and x-ray diffraction characterizations of the fabricated nanofiber demonstrated the interaction of PVA, SBA-15 and curcumin. The scanning electron microscopy results depicted that the nanofiber was highly interconnected with a porous structure mimicking the extracellular matrix. The nanofibrous scaffold showed a higher percentage of cell migration, proliferation, cytocompatibility and biocompatibility with absence of cytotoxicity which was evidenced from the results of MTT assay, cell adhesion and live/dead assay using HaCaT cells. The results of the anti-bacterial test depicted that the synthesized nanofiber forms a potent material for skin wound-healing therapeutics. The in vitro drug release study performed over a period of 80 h revealed a sustained release pattern of curcumin from the SBA-15-incorporated PVA nanofiber. Finally, the in vivo results confirmed that SBA-15-incorporated PVA nanofiber with curcumin showed efficient wound-healing activities.
Collapse
|
4
|
Fan S, Wang Y, Li Z, Zeng Z, Guo S, Huang S, Ma X. Carbon layer-coated ordered mesoporous silica supported Co-based catalysts for higher alcohol synthesis: The role of carbon source. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Benzigar MR, Talapaneni SN, Joseph S, Ramadass K, Singh G, Scaranto J, Ravon U, Al-Bahily K, Vinu A. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem Soc Rev 2018; 47:2680-2721. [PMID: 29577123 DOI: 10.1039/c7cs00787f] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functionalized nanoporous carbon materials have attracted the colossal interest of the materials science fraternity owing to their intriguing physical and chemical properties including a well-ordered porous structure, exemplary high specific surface areas, electronic and ionic conductivity, excellent accessibility to active sites, and enhanced mass transport and diffusion. These properties make them a special and unique choice for various applications in divergent fields such as energy storage batteries, supercapacitors, energy conversion fuel cells, adsorption/separation of bulky molecules, heterogeneous catalysts, catalyst supports, photocatalysis, carbon capture, gas storage, biomolecule detection, vapour sensing and drug delivery. Because of the anisotropic and synergistic effects arising from the heteroatom doping at the nanoscale, these novel materials show high potential especially in electrochemical applications such as batteries, supercapacitors and electrocatalysts for fuel cell applications and water electrolysis. In order to gain the optimal benefit, it is necessary to implement tailor made functionalities in the porous carbon surfaces as well as in the carbon skeleton through the comprehensive experimentation. These most appealing nanoporous carbon materials can be synthesized through the carbonization of high carbon containing molecular precursors by using soft or hard templating or non-templating pathways. This review encompasses the approaches and the wide range of methodologies that have been employed over the last five years in the preparation and functionalisation of nanoporous carbon materials via incorporation of metals, non-metal heteroatoms, multiple heteroatoms, and various surface functional groups that mostly dictate their place in a wide range of practical applications.
Collapse
Affiliation(s)
- Mercy R Benzigar
- Future Industries Institute, Division of Information Technology Energy and Environment, University of South Australia, Adelaide, SA 5095, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|