1
|
Qu B, He Y, Liu S, Huang Y, Bai Y. Biosynthesis of gold nanoparticles and their protective effect towards diabetic nephropathy by inhibition of oxidative stress. Biomed Mater Eng 2025; 36:54-66. [PMID: 39951251 DOI: 10.1177/09592989241296432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BACKGROUND Diabetes is an emerging health issue on a global scale, with increasing prevalence rates reported in many countries. Many mechanisms are proposed for diabetic nephropathy, with oxidative stress being the most significant. The effectiveness of gold nanoparticles (AuNPs) in the attenuation of nephropathy and oxidative stress in diabetic mice was assessed in this study. OBJECTIVE The aim of this study is to synthesize AuNPs and assess their protective effect towards diabetic nephropathy by inhibition of oxidative stress. METHODS The aqueous extract of Allium sativum was employed to synthesize AuNPs. The prepared AuNPs were characterized using a variety of microscopic and spectroscopic techniques. In-vitro studies were conducted using mice. Streptozotocin (STZ) was employed to induce diabetes in rodents. After 7 days of administration of STZ, anesthesia was given to all animals and blood was collected for the assessment of creatinine and Blood Urea Nitrogen (BUN) levels. Later, kidney tissue was removed at 4 °C and changes in pathology and oxidative stress were assessed. RESULTS Nephropathy was confirmed in diabetic mice by the changes in the pathology of kidney tissue along with significant rise in the plasma levels of BUN and creatinine. Additionally, the peroxidation of lipids, formation of Reactive Oxygen Species (ROS), oxidation of glutathione (GSH), concentration of carbonyl protein was also increased in the tissue of kidney of diabetic mice. Oxidative stress in kidney tissue and changes in the pathology of diabetic mice were inhibited significantly (p < 0.05) with the treatment of AuNPs. CONCLUSION This study revealed the protective effects of AuNPs over diabetic nephropathy by inhibiting the pathway of oxidative stress. Since, the prepared AuNPs showed improvement over complications of diabetes, they may be believed as a potential gratuitous treatment next to other drugs for reducing blood glucose.
Collapse
Affiliation(s)
- Bo Qu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhua He
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanlin Liu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulian Huang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingchun Bai
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Yi Z, Zhang Y, Gao X, Li S, Li K, Xiong C, Huang G, Zhang J. Sensitive electrochemical immunosensor for rapid detection of Salmonella in milk using polydopamine/CoFe-MOFs@Nafion modified gold electrode. Int J Food Microbiol 2024; 425:110870. [PMID: 39151230 DOI: 10.1016/j.ijfoodmicro.2024.110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Food contaminated by pathogenic bacteria poses a serious threat to human health. Consequently, we used Salmonella as a model and developed an electrochemical immunosensor based on a polydopamine/CoFe-MOFs@Nafion nanocomposite for the detection of Salmonella in milk. The CoFe-MOFs exhibit good stability, large specific surface area, and high porosity. However, after modification on the electrode surface, they were prone to detachment. This issue was effectively mitigated by incorporating Nafion into the nanocomposite. A polydopamine (PDA) film was deposited onto the surface of CoFe-MOFs@Nafion through cyclic voltammetry (CV), accompanied by an investigation into the polymerization mechanism of the PDA film. PDA contains a substantial number of quinone functional groups, which can covalently bind to amino or sulfhydryl groups via Michael addition reaction or Schiff base reaction, thereby immobilizing anti-Salmonella antibodies onto the modified electrode surface. Under the optimal experimental conditions, the Salmonella concentration exhibited a good linear relationship within the range of 1.38 × 102 to 1.38 × 108 CFU mL-1, with a detection limit of 1.38 × 102 CFU mL-1. Furthermore, the constructed immunosensor demonstrated good specificity, stability, and reproducibility, offering a novel approach for the rapid detection of foodborne pathogens.
Collapse
Affiliation(s)
- Zhibin Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yu Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaoyu Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Shuang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Kexin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
3
|
Hsiao WWW, Lam XM, Le TN, Cheng CA, Chang HC. Exploring nanodiamonds: leveraging their dual capacities for anticancer photothermal therapy and temperature sensing. NANOSCALE 2024; 16:14994-15008. [PMID: 39044543 DOI: 10.1039/d4nr01615g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Cancer has become a primary global health concern, which has prompted increased attention towards targeted therapeutic approaches like photothermal therapy (PTT). The unique optical and magnetic properties of nanodiamonds (NDs) have made them versatile nanomaterials with promising applications in biomedicine. This comprehensive review focuses on the potential of NDs as a multifaceted platform for anticancer therapy, mainly focusing on their dual functionality in PTT and temperature sensing. The review highlighted NDs' ability to enhance PTT through hybridization or modification, underscoring their adaptability in delivering small molecule reagents effectively. Furthermore, NDs, particularly fluorescent nanodiamonds (FNDs) with negatively charged nitrogen-vacancy centers, enable precise temperature monitoring, enhancing PTT efficacy in anticancer treatment. Integrating FNDs into PTT holds promise for advancing therapeutic efficacy by providing valuable insights into localized temperature variations and cell death mechanisms. This review highlights new insights into cancer treatment strategies, showcasing the potential of NDs to revolutionize targeted therapeutics and improve patient outcomes.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Xuan Mai Lam
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan.
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Morani DO, Patil PO. Review on Multifunctional Nanotherapeutics for Drug Delivery, Tumor
Imaging, and Selective Tumor Targeting by Hyaluronic Acid Coupled
Graphene Quantum Dots. CURRENT NANOSCIENCE 2024; 20:89-108. [DOI: 10.2174/1573413719666230210122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2025]
Abstract
Abstract:
Cancer is one of the most widespread life-threatening diseases, and among different
types of cancers, breast cancer is the major disease affecting many women worldwide.
Background:
Conventional chemotherapy using anticancer drugs has many drawbacks, like
poor water solubility, poor bioavailability, rapid relapse, non-specific selectivity, effect on normal
tissues, and rapid drug resistance. Thus, over the last few years, immense efforts have been
made to fabricate nanotherapeutics that will release drugs in response to stimuli.
Objective:
Nanotherapeutics based on graphene quantum dots have been acknowledged with
much gratitude in the bioscience field and investigation applications because of their distinguishing
chemical and physical properties, such as medicine delivery, biosensors, and bioimaging for
the advancement invention of disease.
Conclusion:
This paper analyzes the potential applications of graphene quantum dots for the
modified and desired release of antitumor drugs. Also, it shows graphene quantum dots' capability
to functionalize in the companionship of hyaluronic acid that operates regarding cancer cell
directing matrix in bioimaging and multimodal therapy.
Collapse
Affiliation(s)
- Dilip O. Morani
- Department of Pharmaceutics , Shri D. D. Vispute College of Pharmacy & Research Center, Devad - Vichumbe,
Panvel, Navi Mumbai-410206, India
| | - Pravin O. Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical
Education and Research, Shirpur, Dist. Dhule. 425405, India
| |
Collapse
|
5
|
Neto BAD, Sorto JEP, Lapis AAM, Machado F. Functional chromophores synthesized via multicomponent Reactions: A review on their use as cell-imaging probes. Methods 2023; 220:142-157. [PMID: 37939912 DOI: 10.1016/j.ymeth.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
This review aims to provide a comprehensive overview of recent advancements and applications of fluorescence imaging probes synthesized via MCRs (multicomponent reactions). These probes, also known as functional chromophores, belong to a currently investigated class of fluorophores that are presently being successfully applied in bioimaging experiments, especially in various living cell lineages. We describe some of the MCRs that have been employed in the synthesis of these probes and explore their applications in biological imaging, with an emphasis on cellular imaging. The review also discusses the challenges and future perspectives in the field, particularly considering the potential impact of MCR-based fluorescence imaging probes on advancing this field of research in the coming years. Considering that this area of research is relatively new and nearly a decade has passed since the first publication, this review also provides a historical perspective on this class of fluorophores, highlighting the pioneering works published between 2011 and 2016.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil.
| | - Jenny E P Sorto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | | | - Fabricio Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| |
Collapse
|
6
|
Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics 2022; 14:pharmaceutics14112498. [PMID: 36432688 PMCID: PMC9698844 DOI: 10.3390/pharmaceutics14112498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Fluorescent organic nanoparticles (FONs) are a large family of nanostructures constituted by organic components that emit light in different spectral regions upon excitation, due to the presence of organic fluorophores. FONs are of great interest for numerous biological and medical applications, due to their high tunability in terms of composition, morphology, surface functionalization, and optical properties. Multifunctional FONs combine several functionalities in a single nanostructure (emission of light, carriers for drug-delivery, functionalization with targeting ligands, etc.), opening the possibility of using the same nanoparticle for diagnosis and therapy. The preparation, characterization, and application of these multifunctional FONs require a multidisciplinary approach. In this review, we present FONs following a tutorial approach, with the aim of providing a general overview of the different aspects of the design, preparation, and characterization of FONs. The review encompasses the most common FONs developed to date, the description of the most important features of fluorophores that determine the optical properties of FONs, an overview of the preparation methods and of the optical characterization techniques, and the description of the theoretical approaches that are currently adopted for modeling FONs. The last part of the review is devoted to a non-exhaustive selection of some recent biomedical applications of FONs.
Collapse
|
7
|
Khan Y, Hwang S, Braveenth R, Jung YH, Walker B, Kwon JH. Synthesis of fluorescent organic nano-dots and their application as efficient color conversion layers. Nat Commun 2022; 13:1801. [PMID: 35379797 PMCID: PMC8980075 DOI: 10.1038/s41467-022-29403-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractEfficient conversion of light from short wavelengths to longer wavelengths using color conversion layers (CCLs) underpins the successful operation of numerous contemporary display and lighting technologies. Inorganic quantum dots, based on CdSe or InP, for example, have received much attention in this context, however, suffer from instability and toxic cadmium or phosphine chemistry. Organic nanoparticles (NPs), though less often studied, are capable of very competitive performance, including outstanding stability and water-processability. Surfactants, which are critical in stabilizing many types of nano-structures, have not yet been used extensively in organic NPs. Here we show the utility of surfactants in the synthesis and processing of organic NPs by thoroughly characterizing the effect of ionic and non-ionic surfactants on the properties of fluorescent organic NPs. Using this information, we identify surfactant processing conditions that result in nearly 100 % conversion of organic fluorophores into sub-micrometer particles, or nano-dots, with outstanding performance as CCLs. Such water dispersions are environmentally benign and efficiently convert light. They can be used for a range of fluorophores covering a full spectral gamut, with excellent color purity, including full-width at half-maximum (FWHM) values as low as 21 nm. Compared to inorganic (InP) reference CCLs, the organic nano-dot based CCLs show superior color conversion efficiency and substantially improved long-term stability.
Collapse
|
8
|
Stiernet P, Debuigne A. Imine-Based Multicomponent Polymerization: Concepts, Structural Diversity and Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Veltman B, Harpaz D, Cohen Y, Poverenov E, Eltzov E. Characterization of the selective binding of modified chitosan nanoparticles to Gram-negative bacteria strains. Int J Biol Macromol 2022; 194:666-675. [PMID: 34822835 DOI: 10.1016/j.ijbiomac.2021.11.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/12/2021] [Accepted: 11/16/2021] [Indexed: 01/24/2023]
Abstract
Chitosan is a nature-sourced polysaccharide widely used in numerous applications. The antibacterial potential of chitosan has attracted researchers to further develop and utilize this polymer for the formation of biocompatible antibacterial agents for both the food and healthcare industries. The tested hypothesis in this study is that modified N-alkylaminated chitosan nanoparticles (CNPs) have selective binding properties to Gram-negative bacteria strains that result in bacterial aggregation. Various bacterial strains were tested of five Gram-negative bacteria including Erwinia carotovora, Escherichia coli, Pseudomonas aeruginosa, Salmonella, and Serratia marcescens, as well as three Gram-positive bacteria strains including Bacillus licheniformis, Bacillus megaterium, and Bacillus subtilis. The fluorescence microscopy characterization showed that the presence of CNPs caused the aggregation of Escherichia coli bacteria cells, where modified CNPs with a shorter chain length of the substituent caused a higher aggregation effect. Moreover, it was found that the CNPs exhibited a selective binding behavior to Gram-negative as compared to Gram-positive bacteria strains, mainly to Escherichia coli and Salmonella. Also, the scanning electron microscopy characterization showed that CNPs exhibited selective binding to Gram-negative bacteria, which was especially understood when both Gram-negative and Gram-positive bacteria strains were within the same sample. In addition, the bacterial viability assay suggests that CNPs with a lower degree of substitution have a higher inhibitory effect on bacterial growth. CNPs with longer side chains had a less inhibitory effect on the bacterial growth of Gram-negative strains, where a concentration-dependent response pattern was only seen for the cases of Gram-negative strains, and not for the case of Gram-positive strain. To conclude, the further understanding of the selective binding of CNPs to Gram-negative bacteria strains may produce new opportunities for the discovery and characterization of effective antibacterial agents.
Collapse
Affiliation(s)
- Boris Veltman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Dorin Harpaz
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Yael Cohen
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel.
| | - Elena Poverenov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel.
| |
Collapse
|
10
|
Grewal MS, Abe H, Matsuo Y, Yabu H. Aqueous dispersion and tuning surface charges of polytetrafluoroethylene particles by bioinspired polydopamine-polyethyleneimine coating via one-step method. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210582. [PMID: 34386261 PMCID: PMC8334825 DOI: 10.1098/rsos.210582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 05/12/2023]
Abstract
We propose a surface modification of poorly dispersive polytetrafluoroethylene (PTFE) particles via bioinspired polydopamine-polyethyleneimine (PDA-PEI) which conferred PTFE particles a uniform dispersion in aqueous medium. With increasing dopamine concentration in the reaction solution, dispersity of PTFE particles improved and the surface charges of particles changed from negative to positive due to an increase of surface coverage of PDA-PEI layers. Simplicity of the method here outlines an attractive route for surface modification of inert surfaces useful for large-scale applications.
Collapse
Affiliation(s)
- Manjit Singh Grewal
- WPI-Advanced Institute of Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Hiroya Abe
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | - Yasutaka Matsuo
- Research Institute for Electronic Science (RIES), Hokkaido University, N21W10, Kita-Ku, Sapporo 001-0021, Japan
| | - Hiroshi Yabu
- WPI-Advanced Institute of Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| |
Collapse
|
11
|
Xu J, Cao L, Wang Y, Zhu D, Ye Q. Functionalized polyimide based on mercaptoacetic acid locking imine reaction: Synthesis and coating application. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jiangting Xu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry Xiangtan University Xiangtan China
| | - Liaofeng Cao
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry Xiangtan University Xiangtan China
| | - Yilin Wang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry Xiangtan University Xiangtan China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering Shanghai Jiaotong University Shanghai China
| | - Qiang Ye
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, School of Chemistry Xiangtan University Xiangtan China
| |
Collapse
|
12
|
Yue Y, Zhao X. Melanin-Like Nanomedicine in Photothermal Therapy Applications. Int J Mol Sci 2021; 22:E399. [PMID: 33401518 PMCID: PMC7795111 DOI: 10.3390/ijms22010399] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Photothermal therapy (PTT) mediated by nanomaterial has become an attractive tumor treatment method due to its obvious advantages. Among various nanomaterials, melanin-like nanoparticles with nature biocompatibility and photothermal conversion properties have attracted more and more attention. Melanin is a natural biological macromolecule widely distributed in the body and displays many fascinating physicochemical properties such as excellent biocompatibility and prominent photothermal conversion ability. Due to the similar properties, Melanin-like nanoparticles have been extensively studied and become promising candidates for clinical application. In this review, we give a comprehensive introduction to the recent advancements of melanin-like nanoparticles in the field of photothermal therapy in the past decade. In this review, the synthesis pathway, internal mechanism and basic physical and chemical properties of melanin-like nanomaterials are systematically classified and evaluated. It also summarizes the application of melanin-like nanoparticles in bioimaging and tumor photothermal therapy (PTT)in detail and discussed the challenges they faced in clinical translation rationally. Overall, melanin-like nanoparticles still have significant room for development in the field of biomedicine and are expected to applied in clinical PTT in the future.
Collapse
Affiliation(s)
- Yale Yue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiao Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Huang H, Jiang R, Ma H, Li Y, Zeng Y, Zhou N, Liu L, Zhang X, Wei Y. Fabrication of claviform fluorescent polymeric nanomaterials containing disulfide bond through an efficient and facile four-component Ugi reaction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111437. [PMID: 33255030 DOI: 10.1016/j.msec.2020.111437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/25/2022]
Abstract
Multicomponent reactions (MCRs) have attracted broad interest for preparation of functional nanomaterials especially for the synthesis of functional polymers. Herein, we utilized an "old" MCR, the four-component Ugi reaction, to synthesize disulfide bond containing poly(PEG-TPE-DTDPA) amphiphilic copolymers with aggregation-induced emission (AIE) feature. This four-component Ugi reaction was carried out under rather mild reaction conditions, such as room temperature, no gas protection and absent of catalysts. The amphiphilic poly(PEG-TPE-DTDPA) copolymers with high number-average molecular weight (up to 86,440 Da) can self-assemble into claviform fluorescent polymeric nanoparticles (FPNs) in aqueous solution, and these water-dispersed nanoparticles exhibited strong emission, large Stokes shift (142 nm), low toxicity and remarkable ability in cellular imaging. Moreover, owing to the introduction of 3,3'-dithiodipropionic acid with disulfide bond, the resultant AIE-active poly(PEG-TPE-DTDPA) could display reduction-responsiveness and be utilized for synthesis of photothermal agents in-situ. Therefore, the AIE-active poly(PEG-TPE-DTDPA) could be promising for controlled intracellular delivery of biological activity molecules and fabrication of multifunctional AIE-active materials. Therefore, these novel AIE-active polymeric nanoparticles could be of great potential for various biomedical applications, such as biological imaging, stimuli-responsive drug delivery and theranostic applications.
Collapse
Affiliation(s)
- Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ruming Jiang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Haijun Ma
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Yongsan Li
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Yuan Zeng
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Liangji Liu
- Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, China
| | - Xiaoyong Zhang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
14
|
Synthesis of a novel metal-organic nanocomposite film (MONF) with superior corrosion protection performance based on the biomimetic polydopamine (PDA)-based molecules and Sm2O3 particles on the steel surface. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2276. [PMID: 33212974 PMCID: PMC7698489 DOI: 10.3390/nano10112276] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bioinspired nanomaterials are ideal components for nanomedicine, by virtue of their expected biocompatibility or even complete lack of toxicity. Natural and artificial melanin-based nanoparticles (MNP), including polydopamine nanoparticles (PDA NP), excel for their extraordinary combination of additional optical, electronic, chemical, photophysical, and photochemical properties. Thanks to these features, melanin plays an important multifunctional role in the design of new platforms for nanomedicine where this material works not only as a mechanical support or scaffold, but as an active component for imaging, even multimodal, and simple or synergistic therapy. The number of examples of bio-applications of MNP increased dramatically in the last decade. Here, we review the most recent ones, focusing on the multiplicity of functions that melanin performs in theranostics platforms with increasing complexity. For the sake of clarity, we start analyzing briefly the main properties of melanin and its derivative as well as main natural sources and synthetic methods, moving to imaging application from mono-modal (fluorescence, photoacoustic, and magnetic resonance) to multi-modal, and then to mono-therapy (drug delivery, anti-oxidant, photothermal, and photodynamic), and finally to theranostics and synergistic therapies, including gene- and immuno- in combination to photothermal and photodynamic. Nanomedicine aims not only at the treatment of diseases, but also to their prevention, and melanin in nature performs a protective action, in the form of nanopigment, against UV-Vis radiations and oxidants. With these functions being at the border between nanomedicine and cosmetics nanotechnology, recently examples of applications of artificial MNP in cosmetics are increasing, paving the road to the birth of the new science of nanocosmetics. In the last part of this review, we summarize and discuss these important recent results that establish evidence of the interconnection between nanomedicine and cosmetics nanotechnology.
Collapse
Affiliation(s)
- Alexandra Mavridi-Printezi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
- Tecnopolo di Rimini, Via Campana 71, 47922 Rimini, Italy
| |
Collapse
|
16
|
Nath J, Saikia PP, Handique J, Gupta K, Dolui SK. Multifunctional mussel‐inspired Gelatin and Tannic acid‐based hydrogel with pH‐controllable release of vitamin B
12. J Appl Polym Sci 2020. [DOI: 10.1002/app.49193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jayashree Nath
- Department of Chemical SciencesTezpur University Tezpur Assam India
| | | | - Junali Handique
- Department of Chemical SciencesTezpur University Tezpur Assam India
| | - Kuldeep Gupta
- Department of Molecular Biology and BiotechnologyTezpur University Tezpur Assam India
| | | |
Collapse
|
17
|
Ahmad ZU, Yao L, Lian Q, Islam F, Zappi ME, Gang DD. The use of artificial neural network (ANN) for modeling adsorption of sunset yellow onto neodymium modified ordered mesoporous carbon. CHEMOSPHERE 2020; 256:127081. [PMID: 32447112 DOI: 10.1016/j.chemosphere.2020.127081] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 05/09/2023]
Abstract
Discharging coloring products in water bodies has degraded water quality irreversibly over the past several decades. Order mesoporous carbon (OMC) was modified by embedding neodymium(III) chloride on the surface of OMC to enhance the adsorptive removal towards these contaminants. This paper represents an artificial neural network (ANN) based approach for modeling the adsorption process of sunset yellow onto neodymium modified OMC (OMC-Nd) in batch adsorption experiments. Neodymium modified OMC was characterized using N2 adsorption-desorption isotherm, TEM micrographs, FT-IR and XPS spectra analysis techniques. 2.5 wt% Nd loaded OMC was selected as the final adsorbent for further experiments because OMC-2.5Nd showed highest removal efficiency of 93%. The ANN model was trained and validated with the adsorption experiments data where initial concentration, reaction time, and adsorbent dosage were selected as the variables for the batch study, whereas the removal efficiency was considered as the output. The ANN model was first developed using a three-layer back propagation network with the optimum structure of 3-6-1. The model employed tangent sigmoid transfer function as input in the hidden layer whereas a linear transfer function was used in the output layer. The comparison between modeled data and experimental data provided high degree of correlation (R2 = 0.9832) which indicated the applicability of ANN model for describing the adsorption process with reasonable accuracy.
Collapse
Affiliation(s)
- Zaki Uddin Ahmad
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Wastewater Infrastructure Planning, Houston Water, Houston Public Works, 611 Walker Street, 18th Floor, Houston, TX, 77008, USA
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, 1638 Wolong Rd, Nanyang, Henan, PR China
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center of Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Fahrin Islam
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center of Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Mark E Zappi
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center of Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, P. O. Box 43675, Lafayette, LA, 70504, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, P. O. Box 43598, Lafayette, LA, 70504, USA; Center of Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA.
| |
Collapse
|
18
|
Hashim MS, Khaleel RS. The bioactivities of prepared Ti, Zn, TiO2, ZnO and Al2O3 nanoparticles by rapid breakdown anodization technique. SURFACES AND INTERFACES 2020; 20:100640. [DOI: 10.1016/j.surfin.2020.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Ali SA, Alhaffar MT, Akhtar MN. Glycidyl ether of naturally occurring sesamol in the synthesis of mussel-inspired polymers. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Niaz T, Shabbir S, Noor T, Abbasi R, Imran M. Alginate-caseinate based pH-responsive nano-coacervates to combat resistant bacterial biofilms in oral cavity. Int J Biol Macromol 2020; 156:1366-1380. [DOI: 10.1016/j.ijbiomac.2019.11.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
|
21
|
Self-healing, sensitive and antifreezing biomass nanocomposite hydrogels based on hydroxypropyl guar gum and application in flexible sensors. Int J Biol Macromol 2020; 155:1569-1577. [DOI: 10.1016/j.ijbiomac.2019.11.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 01/08/2023]
|
22
|
Li W, Wan H, Yan S, Yan Z, Chen Y, Guo P, Ramesh T, Cui Y, Ning L. Gold nanoparticles synthesized with Poria cocos modulates the anti-obesity parameters in high-fat diet and streptozotocin induced obese diabetes rat model. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
23
|
Mobed A, Mehri P, Hasanzadeh M, Mokhtarzadeh A. Binding of Leishmania spp with gold nanoparticles supported polyethylene glycol and its application for the sensitive detection of infectious photogenes in human plasma samples: A novel biosensor. J Mol Recognit 2020; 33:e2839. [PMID: 32266744 DOI: 10.1002/jmr.2839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 02/02/2023]
Abstract
The management of pathogen detection using a rapid and cost-effective method presents a major challenge to the biological safety of the world. The field of pathogen detection is nascent and therefore, faces a dynamic set of challenges as the field evolves. Visceral leishmaniasis (VL), or kala-azar is the most severe form of leishmaniasis. Delay to the accurate diagnosis and treatment is likely to lead to fatality. The reliable, fast and sensitive detection is closely linked to safe and effective treatment of Leishmania spp. Despite several routine and old method for sensitive and specificity detection of Leishmania spp, there is highly demand for developing modern and powerfully system. In this study a novel ultra-sensitive DNA-based biosensor was prepared for detection of Leishmania spp. For the first time, the specific and thiolated sequences of the Leishmania spp genome (5'-SH-[CH2 ]6 ATCTCGTAAGCAGATCGCTGTGTCAC-3') were recognized by electrochemical methods. Also, selectivity of the proposed bioassay was examined by three sequences that were mismatched in 1, 2, and 3 nucleotides. The linear range (10-6 to 10-21 M) and limit of detection (LLOQ = 1 ZM) obtained are remarkable in this study. Also, simple and cost-effective construction of genosensors was another advantage of the proposal DNA-based assay. The experimental results promise a fast and simple method in detection of kala-azar patients with huge potential of the nanocomposite-based probe for development of ideal biosensors.
Collapse
Affiliation(s)
- Ahmad Mobed
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Mehri
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
|
25
|
Guo L, Liu Y, Dou J, Huang Q, Lei Y, Chen J, Wen Y, Li Y, Zhang X, Wei Y. Highly efficient removal of Eu3+ ions using carbon nanotubes-based polymer composites synthesized from the combination of Diels-Alder and multicomponent reactions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Long W, Ouyang H, Zhou C, Wan W, Yu S, Qian K, Liu M, Zhang X, Feng Y, Wei Y. A novel one-pot strategy for fabrication of PEGylated MoS2 composites for pH responsive controlled drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Tellers J, Zych A, Neuteboom P, Soliman M, Vachon J. Polyolefin copolymer PE-HEMA with increased metal adhesion properties. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Yang Z, Pu M, Dong X, Ji F, Priya Veeraraghavan V, Yang H. Piperine loaded zinc oxide nanocomposite inhibits the PI3K/AKT/mTOR signaling pathway via attenuating the development of gastric carcinoma: In vitroandin vivostudies. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Yang G, Song N, Deng F, Liang J, Huang Q, Dou J, Wen Y, Liu M, Zhang X, Wei Y. Direct surface functionalization of graphene oxide with ionic liquid through gamma ray irradiation induced radical polymerization with remarkable enhanced adsorption capacity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Chen J, Cui Y, Liu M, Huang H, Deng F, Mao L, Wen Y, Tian J, Zhang X, Wei Y. Surface grafting of fluorescent polymers on halloysite nanotubes through metal-free light-induced controlled polymerization: Preparation, characterization and biological imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110804. [PMID: 32279750 DOI: 10.1016/j.msec.2020.110804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
Halloysite nanotubes (HNTs) are a kind of aluminosilicate clay with a unique hollow tubular structure that has been intensively explored for various applications especially in biomedical fields owing to their excellent biocompatibility, biodegrading potential and low cost. Surface modification of HNTs with functional polymers will greatly improve their properties and endow new functions for biomedical applications. In this work, a light-induced reversible addition-fragmentation chain transfer (RAFT) polymerization was introduced to successfully prepare HNTs based fluorescent HNTs/poly(PEGMA-Fl) composites in the presence of oxygen using diacrylate-fluorescein and poly (ethylene glycol) methyl ether methacrylate (PEGMA) as the monomers. Without other catalysts, heating, and deoxygenation procedure, the polymerization process can take place under mild conditions. Besides, owing to the introduction of fluorescein and PEGMA on the surface of HNTs, the resultant HNTs/poly(PEGMA-Fl) composites display high water dispersibility and stable fluorescence. The results from cell viability examination and confocal laser scanning microscopy also demonstrated that HNTs/poly(PEGMA-Fl) composites could be internalized by L929 cells with bright fluorescence and low cytotoxicity. Taken together, we developed a novel photo-initiated RAFT polymerization method for the fabrication of HNTs based fluorescent polymeric composites with great potential for biomedical applications. More importantly, many other multifunctional HNTs based polymer composites could also be fabricated through a similar strategy owing to good designability of RAFT polymerization.
Collapse
Affiliation(s)
- Junyu Chen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yi Cui
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Hongye Huang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Liucheng Mao
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yuanqing Wen
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Jianwen Tian
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Xiaoyong Zhang
- College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
31
|
Guo Y, Jiang N, Zhang L, Yin M. Green synthesis of gold nanoparticles from Fritillaria cirrhosa and its anti-diabetic activity on Streptozotocin induced rats. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
32
|
Liu H, Yang Y, Liu Y, Pan J, Wang J, Man F, Zhang W, Liu G. Melanin-Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903129. [PMID: 32274309 PMCID: PMC7141020 DOI: 10.1002/advs.201903129] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/31/2019] [Indexed: 05/03/2023]
Abstract
Developing efficient, sustainable, and biocompatible high-tech nanoplatforms derived from naturally existing components in living organisms is highly beneficial for diverse advanced biomedical applications. Melanins are nontoxic natural biopolymers owning widespread distribution in various biosystems, possessing fascinating physicochemical properties and playing significant physiological roles. The multifunctionality together with intrinsic biocompatibility renders bioinspired melanin-like nanomaterials considerably promising as a versatile and powerful nanoplatform with broad bioapplication prospects. This panoramic Review starts with an overview of the fundamental physicochemical properties, preparation methods, and polymerization mechanisms of melanins. A systematical and well-bedded description of recent advancements of melanin-like nanomaterials regarding diverse biomedical applications is then given, mainly focusing on biological imaging, photothermal therapy, drug delivery for tumor treatment, and other emerging biomedicine-related implementations. Finally, current challenges toward clinical translation with an emphasis on innovative design strategies and future striving directions are rationally discussed. This comprehensive and detailed Review provides a deep understanding of the current research status of melanin-like nanomaterials and is expected to motivate further optimization of the design of novel tailorable and marketable multifunctional nanoplatforms in biomedicine.
Collapse
Affiliation(s)
- Heng Liu
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Youyuan Yang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Yu Liu
- Department of UltrasoundThe First Affiliated HospitalArmy Medical UniversityChongqing400038China
| | - Jingjing Pan
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Fengyuan Man
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Weiguo Zhang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
- Chongqing Clinical Research Center for Imaging and Nuclear MedicineChongqing400042China
| | - Gang Liu
- Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
33
|
Click multiwalled carbon nanotubes: A novel method for preparation of carboxyl groups functionalized carbon quantum dots. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110376. [DOI: 10.1016/j.msec.2019.110376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/28/2023]
|
34
|
Sharma C, Bhardwaj NK. Fabrication of natural-origin antibacterial nanocellulose films using bio-extracts for potential use in biomedical industry. Int J Biol Macromol 2020; 145:914-925. [DOI: 10.1016/j.ijbiomac.2019.09.182] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/25/2022]
|
35
|
Soumia A, Adel M, Amina S, Bouhadjar B, Amal D, Farouk Z, Abdelkader B, Mohamed S. Fe3O4-alginate nanocomposite hydrogel beads material: One-pot preparation, release kinetics and antibacterial activity. Int J Biol Macromol 2020; 145:466-475. [DOI: 10.1016/j.ijbiomac.2019.12.211] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
|
36
|
Awasthi GP, Maharjan B, Shrestha S, Bhattarai DP, Yoon D, Park CH, Kim CS. Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone–MXene electrospun fibers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Huang H, Jiang R, Feng Y, Ouyang H, Zhou N, Zhang X, Wei Y. Recent development and prospects of surface modification and biomedical applications of MXenes. NANOSCALE 2020; 12:1325-1338. [PMID: 31872839 DOI: 10.1039/c9nr07616f] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
MXenes, as a novel kind of two-dimensional (2D) materials, were first discovered by Gogotsi et al. in 2011. Owing to their multifarious chemical compositions and outstanding physicochemical properties, the novel types of 2D materials have attracted intensive research interest for potential applications in various fields such as energy storage and conversion, environmental remediation, catalysis, and biomedicine. Although many achievements have been made in recent years, there still remains a lack of reviews to summarize these recent advances of MXenes, especially in biomedical fields. Understanding the current status of surface modification, biomedical applications and toxicity of MXenes and related materials will give some inspiration to the development of novel methods for the preparation of multifunctional MXene-based materials and promote the practical biomedical applications of MXenes and related materials. In this review, we present the recent developments in the surface modification of MXenes and the biomedical applications of MXene-based materials. In the first section, some typical surface modification strategies were introduced and the related issues were also discussed. Then, the potential biomedical applications (such as biosensor, biological imaging, photothermal therapy, drug delivery, theranostic nanoplatforms, and antibacterial agents) of MXenes and related materials were summarized and highlighted in the following sections. In the last section, the toxicity and biocompatibility of MXenes in vitro were mentioned. Finally, the development, future directions and challenges about the surface modification of MXene-based materials for biomedical applications were discussed. We believe that this review article will attract great interest from the scientists in materials, chemistry, biomedicine and related fields and promote the development of MXenes and related materials for biomedical applications.
Collapse
Affiliation(s)
- Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Tian J, Zhou H, Jiang R, Chen J, Mao L, Liu M, Deng F, Liu L, Zhang X, Wei Y. Preparation and biological imaging of fluorescent hydroxyapatite nanoparticles with poly(2-ethyl-2-oxazoline) through surface-initiated cationic ring-opening polymerization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110424. [PMID: 31923979 DOI: 10.1016/j.msec.2019.110424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Abstract
Fluorescent hydroxyapatite (HAp) nanoparticles have received significant attention in biomedical fields due to their outstanding advantages, such as low immunogenicity, excellent biocompatibility and biodegradability. However, fluorescent HAp nanoparticles with well controlled size and morphology are coated with hydrophobic molecules and their biomedical applications are largely restricted by their poor dispersibility in physiological solutions. Therefore, surface modification of these hydrophobic fluorescent HAp nanoparticles to render them water dispersibility is of utmost importance for biomedical applications. In this work, we reported for the first time for preparation of water-dispersible hydrophilic fluorescent Eu3+-doped HAp nanoparticles (named as HAp-PEOTx) through the cationic ring-opening polymerization using hydrophilic and biocompatible 2-ethyl-2-oxazoline (EOTx) as the monomer. The characterization techniques, such as nuclear magnetic resonance (NMR) spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) have been used to characterize these samples. Results confirmed that we could successfully obtain the hydrophilic fluorescent HAp-PEOTx composites through the strategy described above. These fluorescent HAp-PEOTx composites display great water dispersibility, unique fluorescent properties and excellent biocompatibility, making them promising for in vitro bioimaging applications.
Collapse
Affiliation(s)
- Jianwen Tian
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Huajian Zhou
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ruming Jiang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Liucheng Mao
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Liangji Liu
- Jiangxi University of Traditional Chinese Medicine, 56 Yangming Road, Nanchang, Jiangxi 330006, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry, Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry, Center for Nanotechnology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
39
|
Zhong Z, Gao R, Chen Q, Jia L. Dual-aptamers labeled polydopamine-polyethyleneimine copolymer dots assisted engineering a fluorescence biosensor for sensitive detection of Pseudomonas aeruginosa in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117417. [PMID: 31362188 DOI: 10.1016/j.saa.2019.117417] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
To ensure the food security and protect public health, development of rapid and reliable approaches to detecting foodborne pathogens is of great significance. In this study, polydopamine-polyethyleneimine (PDA-PEI) copolymer dots are prepared via the self-polymerization of dopamine and cross-linking with branched PEI at room temperature. The PDA-PEI copolymer dots are very stable against photobleaching, extreme pH, as well as high ionic strength. They are used as a fluorescent probe to fabricate a biosensor for rapid and sensitive detection and quantification of Pseudomonas aeruginosa (P. aeruginosa). In the biosensor, dual-aptamers of P. aeruginosa are used to label PDA-PEI copolymer dots. Compared to single aptamer labeled PDA-PEI dots, the dual-aptamers labeled PDA-PEI dots endow the biosensor with enhanced sensitivity for target pathogen. The fluorescence biosensor demonstrates a wide linear response to P. aeruginosa in the concentration range of 101-107 cfu mL-1 with acceptable selectivity. The limit of detection is calculated to be 1 cfu mL-1. The whole detection process can be finished in 1.5 h. The feasibility of the fabricated biosensor is verified by successful determination of P. aeruginosa in skim milk, orange juice, and popsicle samples. The biosensor provides an alternative and attractive platform for rapid and sensitive detection of bacteria in food products.
Collapse
Affiliation(s)
- Zitao Zhong
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ran Gao
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qingmei Chen
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
40
|
Wu J, Zhang J, Zhou S, Yang Z, Zhang X. Ag nanoparticle-decorated carbon nanotube sponges for removal of methylene blue from aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj00860e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fabrication of AgNP-Pdop-CNTS for MB adsorption and regeneration.
Collapse
Affiliation(s)
- Junjie Wu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
| | - Jiapeng Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
| | - Shenglin Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
| | - Zhaohui Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
- Jiangsu Key Laboratory of Thin Films
| | - Xiaohua Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
- Jiangsu Key Laboratory of Thin Films
| |
Collapse
|
41
|
Satheeshkumar M, Kumar ER, Indhumathi P, Srinivas C, Deepty M, Sathiyaraj S, Suriyanarayanan N, Sastry D. Structural, morphological and magnetic properties of algae/CoFe2O4 and algae/Ag-Fe-O nanocomposites and their biomedical applications. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110157. [DOI: 10.1016/j.msec.2019.110157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/26/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022]
|
43
|
Chaudhari S, Kwon Y, Shon M, Nam S, Park Y. Surface-modified polyvinyl alcohol (PVA) membranes for pervaporation dehydration of epichlorohydrin (ECH), isopropanol (IPA), and water ternary feed mixtures. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Habibiyan A, Ramezanzadeh B, Mahdavian M, Kasaeian M. Facile size and chemistry-controlled synthesis of mussel-inspired bio-polymers based on Polydopamine Nanospheres: Application as eco-friendly corrosion inhibitors for mild steel against aqueous acidic solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111974] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Farshchi F, Hasanzadeh M, Mokhtarzadeh A. A novel electroconductive interface based on Fe
3
O
4
magnetic nanoparticle and cysteamine functionalized AuNPs: Preparation and application as signal amplification element to minoring of antigen‐antibody immunocomplex and biosensing of prostate cancer. J Mol Recognit 2019; 33:e2825. [DOI: 10.1002/jmr.2825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Fatemeh Farshchi
- Department of BiochemistryHigher Education Institute of Rab‐Rashid Tabriz Iran
- Biotechnology Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Ahad Mokhtarzadeh
- Immunology Research CenterTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
46
|
Kritchenkov AS, Egorov AR, Artemjev AA, Kritchenkov IS, Volkova OV, Kurliuk AV, Shakola TV, Rubanik VV, Rubanik VV, Tskhovrebov AG, Yagafarov NZ, Khrustalev VN. Ultrasound-assisted catalyst-free thiol-yne click reaction in chitosan chemistry: Antibacterial and transfection activity of novel cationic chitosan derivatives and their based nanoparticles. Int J Biol Macromol 2019; 143:143-152. [PMID: 31805332 DOI: 10.1016/j.ijbiomac.2019.11.241] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 11/17/2022]
Abstract
In this work, we demonstrate that the thiol-yne click reaction could be efficiently mediated by ultrasonic irradiation and implement the ultrasound-assisted thiol-yne click reaction to chitosan chemistry as a polymer-analogous transformation. We optimize power and frequency of ultrasound to preserve selectivity of the click reaction and avoid ultrasonic degradation of the chitosan polymer chain. Thus, we obtain a new water-soluble betaine. Using ionic gelation of the obtained betaine derivatives of chitosan, we prepare nanoparticles with a unimodal size distribution. Furthermore, we present results of antibacterial and transfection activity tests for the chitosan derivatives and their based nanoparticles. The derivative with a medium molecular weight and a high degree of substitution demonstrated the best antibacterial effect. It derived nanoparticles with a size of ca. 100 nm and ζ-potential of ca. +69 mV revealed even higher antibacterial activity, slightly superior to commercial antibiotics ampicillin and gentamicin. On the contrary, the obtained polymers possess a much more pronounced transfection activity as compared with their based nanoparticles and species with a low degree of substitution acts as the most efficient transfecting agent. Moreover, the obtained betaine chitosan derivatives as well as their derived nanoparticles are non-toxic.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Alexey A Artemjev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Ilya S Kritchenkov
- Saint Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russian Federation
| | - Olga V Volkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Vasili V Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk 210009, Belarus
| | - Alexander G Tskhovrebov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Building 1, Moscow 119991, Russian Federation
| | - Niyaz Z Yagafarov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovityanov Street, Moscow 117997, Russian Federation
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
47
|
Yang G, Huang H, Chen J, Gan D, Deng F, Huang Q, Wen Y, Liu M, Zhang X, Wei Y. Preparation of ionic liquids functionalized nanodiamonds-based composites through the Michael addition reaction for efficient removal of environmental pollutants. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Javanbakht S, Shaabani A. Multicomponent Reactions-Based Modified/Functionalized Materials in the Biomedical Platforms. ACS APPLIED BIO MATERIALS 2019; 3:156-174. [DOI: 10.1021/acsabm.9b00799] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran 1963963113, Iran
| |
Collapse
|
49
|
He Z, Jiang R, Long W, Huang H, Liu M, Chen J, Deng F, Zhou N, Zhang X, Wei Y. The combination of Diels-Alder reaction and redox polymerization for preparation of functionalized CNTs for intracellular controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110442. [PMID: 32228901 DOI: 10.1016/j.msec.2019.110442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Carbon nanotubes (CNTs) are a novel type of one-dimensional carbon nanomaterials that have been widely utilized for biomedical applications such as drug delivery, cancer photothermal treatment owing to their high surface area and unique interaction with cell membranes. However, their biomedical applications are still impeded by some drawbacks, including poor water dispersibility, lack of functional groups and toxicity. Therefore, surface modification of CNTs to overcome these issues should be importance and of great interest. In this work, we reported for the first time that CNTs could be surface modification through the combination of Diels-Alder (D-A) reaction and redox polymerization, this strategy shows the advantages of mild reaction conditions, water tolerance, low temperature and hydroxyl-surfaced initiator. In this modification procedure, the hydroxyl groups were introduced on the surface of CNTs through the D-A reaction that was adopted for grafting the copolymers, which were initiated by the Ce(IV)/HNO3 redox system using the hydrophilic and biocompatible poly(ethylene glycol) methyl ether methacrylate (PEGMA) and carboxyl-rich acrylic acid (AA) as monomers. The final CNTs-OH-PAA@PEGMA composites were characterized by a series of characterization techniques. The drug loading and release results suggested that anticancer agent cis‑platinum (CDDP) could be loaded on CNTs-OH-PAA@PEGMA composites through coordination with carboxyl groups and drug release behavior could be controlled by pH. More importantly, the cell viability results clearly demonstrated that CNTs-OH-PAA@PEGMA composites displayed low toxicity and the drug could be transported in cells and still maintain their therapeutic effects.
Collapse
Affiliation(s)
- Ziyang He
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Ruming Jiang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Wei Long
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Hongye Huang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Junyu Chen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Fengjie Deng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Naigen Zhou
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China; Department of Chemistry and Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
50
|
Long W, Ouyang H, Wan W, Yan W, Zhou C, Huang H, Liu M, Zhang X, Feng Y, Wei Y. "Two in one": Simultaneous functionalization and DOX loading for fabrication of nanodiamond-based pH responsive drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110413. [PMID: 31923965 DOI: 10.1016/j.msec.2019.110413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/13/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023]
Abstract
Nanodiamond (ND) has been widely studied as a new type of carbon nanomaterials that is expected to be used as a promising candidate in various fields especially in the field of biomedicine. However, its poor water dispersibility and insufficient controlled release limit its practical applications. In this paper, ND-based composites with pH-responsive hydrazone bonds were successfully prepared by a simple chemical reaction between ester groups and hydrazine hydrate, in which ester groups were conjugated on the surface of ND via thiol-ene click reaction. On the other hand, CHO-PEG and doxorubicin hydrochloride (DOX) were linked on the carriers through formation of hydrazone bonds, resulting in improving water dispersibility and high drug loading capacity. The structure, thermal stability, surface morphology and particle size of ND carriers were characterized by different equipment. Results demonstrated that we have successfully prepared these functionalized ND. The release rate of DOX in acidic environment was significantly greater than that in normal physiological environment. More importantly, cell viability and optical imaging results showed that ND-based composites possess good biocompatibility, therapeutic effect, and could successfully transport DOX to HepG2 cells. Considering the above results, we believe that our new ND carriers will become promising candidates for intracellular controlled drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Wei Long
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weimin Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenfeng Yan
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chaoqun Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|